972 resultados para CMS,DT,HL-LHC,Phase-2
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/. c to 1 TeV/. c. The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.), independent of the muon momentum, below 100 GeV/. c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments. © 2010.
Resumo:
The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The CMS experiment uses self-triggering arrays of drift tubes in the barrel muon trigger to perform the identification of the correct bunch crossing. The identification is unique only if the trigger chain is correctly synchronized. In this paper, the synchronization performed during an extended cosmic ray run is described and the results are reported. The random arrival time of cosmic ray muons allowed several synchronization aspects to be studied and a simple method for the fine synchronization of the Drift Tube Local Trigger at LHC to be developed. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
The resolution and the linearity of time measurements made with the CMS electromagnetic calorimeter are studied with samples of data from test beam electrons, cosmic rays, and beam-produced muons. The resulting time resolution measured by lead tungstate crystals is better than 100 ps for energy deposits larger than 10 GeV. Crystal-to-crystal synchronization with a precision of 500 ps is performed using muons produced with the first LHC beams in 2008. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Commissioning studies of the CMS hadron calorimeter have identified sporadic uncharacteristic noise and a small number of malfunctioning calorimeter channels. Algorithms have been developed to identify and address these problems in the data. The methods have been tested on cosmic ray muon data, calorimeter noise data, and single beam data collected with CMS in 2008. The noise rejection algorithms can be applied to LHC collision data at the trigger level or in the offline analysis. The application of the algorithms at the trigger level is shown to remove 90% of noise events with fake missing transverse energy above 100 GeV, which is sufficient for the CMS physics trigger operation. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
A measurement of the underlying activity in scattering processes with pT scale in the GeV region is performed in proton-proton collisions at √ = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged particle production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged particles with pseudorapidity {pipe}η{pipe} < 2, pT > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object. © 2010 CERN for benefit of the CMS collaboration.
Resumo:
The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.
Resumo:
First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76TeV over a broad range in relative pseudorapidity (Δν) and the full range of relative azimuthal angle (Δø). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Δø y≈ π) azimuthal correlation is observed at all Δν, as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Δν are observed for particles with similar ø values. This phenomenon, also known as the \ridge, persists up to at least jΔνj = 4. For particles with transverse momenta (pT) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pT = 2-6 GeV/c, and to be much reduced when paired with particles of pT = 10-12 GeV/c. Copyright CERN.
Resumo:
Measurements of inclusive W and Z boson production cross sections in pp collisions at √s = 7 TeV are presented, based on 2.9 pb-1 of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give σ(pp → WX) × B(W → l?) = 9.95 ± 0.07 (stat.) ± 0.28 (syst.) ± 1.09 (lumi.) nb and σ(pp → ZX) × B(Z → l +l-) = 0.931 ± 0.026 (stat.) ± 0.023 (syst.) ± 0.102 (lumi.) nb, where l stands for either e or μ. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported.
Resumo:
The Drell-Yan differential cross section is measured in pp collisions at √ s = 7TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 pb-1. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15{600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions. Copyright CERN.
Resumo:
A measurement of the underlying activity in events with a jet of transverse momentum in the several GeV region is performed in proton-proton collisions at √ s = 0:9 and 7TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |η|<2 and transverse momentum pT >0:5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading trackjet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centreof- mass energy increase from 0:9 to 7TeV. Predictions of several QCD-inspired models as implemented in pythia are compared to the data.