911 resultados para CELL DIFFERENTIATION
Resumo:
Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.
Resumo:
Extension of the vertebrate body results from the concerted activity of many signals in the posterior embryonic end. Among them, Wnt3a has been shown to play relevant roles in the regulation of axial progenitor activity, mesoderm formation and somitogenesis. However, its impact on axial growth remains to be fully understood. Using a transgenic approach in the mouse, we found that the effect of Wnt3a signaling varies depending on the target tissue. High levels of Wnt3a in the epiblast prevented formation of neural tissues, but did not impair axial progenitors from producing different mesodermal lineages. These mesodermal tissues maintained a remarkable degree of organization, even within a severely malformed embryo. However, from the cells that failed to take a neural fate, only those that left the epithelial layer of the epiblast activated a mesodermal program. The remaining tissue accumulated as a folded epithelium that kept some epiblast-like characteristics. Together with previously published observations, our results suggest a dose-dependent role for Wnt3a in regulating the balance between renewal and selection of differentiation fates of axial progenitors in the epiblast. In the paraxial mesoderm, appropriate regulation of Wnt/β-catenin signaling was required not only for somitogenesis, but also for providing proper anterior-posterior polarity to the somites. Both processes seem to rely on mechanisms with different requirements for feedback modulation of Wnt/β-catenin signaling, once segmentation occurred in the presence of high levels of Wnt3a in the presomitic mesoderm, but not after permanent expression of a constitutively active form of β-catenin. Together, our findings suggest that Wnt3a/β-catenin signaling plays sequential roles during posterior extension, which are strongly dependent on the target tissue. This provides an additional example of how much the functional output of signaling systems depends on the competence of the responding cells.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Th2-associated factors such as IL-4 are involved in both the development of Th2 responses (via modulating Th2 cell differentiation) and in the effector phase of Th2 responses (via modulating macrophage activation). The IL-1 receptor-like protein ST2 (T1, Fit-1, or DER4) is expressed as a membrane-bound (ST2L) or secreted form (sST2), and has been clearly implicated as a regulator of both the development and effector phases of Th2-type responses. Here we analyze the mechanisms and therapeutic implications of the unique ability of ST2 to promote development and function of type 2 helper T cells through a positive feedback loop, as well as to act as a negative feedback modulator of macrophage pro-inflammatory function. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron I. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron I is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes. (c) 2006 Wiley-Liss, Inc.
Resumo:
Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Half of the members of the nuclear receptors superfamily are so-called orphan receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Resumo:
PKC-mediated signalling pathways are important in cell growth and differentiation, and aberrations in these pathways are implicated in tumourigenesis. The objective of this project was to clarify the link between cell growth inhibition and PKC modulation.The PKC activators bryostatin 1 and 12-0-tetradecanoylphorbol-13-acetate (TPA) inhibited growth in A549 and MCF-7 adenocarcinoma cells with great potency, and induced HL-60 leukaemia cell differentiation. Bistratene A affected these cells similarly. Experiments were conducted to test the hypotheses that bistratene A exerts its effects via PKC modulation and that characteristics of cytostasis induced by bryostatin 1 and TPA depend upon PKC isozyme-specific events. After incubation of A549 cells with TPA or bistratene A, 2D phosphoprotein electrophoretograrns revealed three proteins phosphorylated by both agents. However, bistratene A was unable to induce the formation of cellular networks on the basement membrane substitute Matrigel, and staurosporine was unable to reverse bistratene A-induced [3H]thymidine uptake inhibition, unlike TPA. Bistratene A did not induce PKC translocation or downregulation, activate or inhibit A549 and MCF-7 cell cytosolic PKC or compete for phorbol ester receptors. Western blot analysis and hydroxylapatite chromatography identified PKC α, ε and ζ in these cells. Bistratene A was unable to activate any of these isoforms. Therefore the agent does not exert its antiproliferative effects by modulation of PKC activity. The abilities of bryostatin 1 and TPA (10nM-1μM) to induce PKC isoform translocation and downregulation were compared with antiproliferative effects. Both agents induced dose-dependent downregulation and translocation of PKC α and ε to particulate and nuclear cell fractions. PKC ζ was translocated to the particulate fraction by both agents in MCF-7 cells. The similarity of PKC isoform redistribution by these agents did not explain their divergent effects on cell growth, and the role of nuclear translocation of PKC in cytostasis was not confirmed by these studies. Alternative factors governing the characteristics of growth inhibition induced by these agents are discussed.
Development of a multicellular co-culture model of normal and cystic fibrosis human airways in vitro
Resumo:
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.
Resumo:
Scaffolds derived from processed tissues offer viable alternatives to synthetic polymers as biological scaffolds for regenerative medicine. Tissue-derived scaffolds provide an extracellular matrix (ECM) as the starting material for wound healing and the functional reconstruction of tissues, offering a potentially valuable approach for the replacement of damaged or missing tissues. Additionally, acellular tissue may provide a natural microenvironment for host-cell migration and the induction of stem cell differentiation to contribute to tissue regeneration. There are a number of processing methods that aim to stabilize and provide an immunologically inert tissue scaffold. Furthermore, these tissue-processing methods can often be applied to xenogenic transplants because the essential components of the ECM are often maintained between species. In this study, we applied several tissue-processing protocols to the cornea in order to obtain a decellularized cornea matrix that maintained the clarity and mechanical properties of the native tissue. Histology, mechanical testing and electron microscopy techniques were used to assess the cell extraction process and the organization of the remaining ECM. In vitro cell seeding experiments confirmed the processed corneas’ biocompatibility.
Resumo:
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel.
Resumo:
Tissue transglutaminase (tTG) has recently been established as a novel cell surface adhesion protein that binds with high affinity to fibronectin in the pericellular matrix. In this study, we have made use of this property to enhance the biocompatibility of poly(epsilon-caprolactone) (PCL), a biomaterial currently used in bone repair. Poly(epsilon-caprolactone) discs were first coated with fibronectin and then tTG. The surface localisation of the two proteins was confirmed using ELISA and the tTG shown to be active on the surface by incorporation of biotin cadaverine into the fibronectin coating. When human osteoblasts (HOBs) were seeded onto the coated polymer surfaces in serum free medium, the surface coated with fibronectin and then tTG showed an increase in the spreading of the cells as compared to the surface coated with fibronectin alone, when analysed using environmental scanning electron microscopy. The presence of tTG had no effect on HOB cell differentiation when analysed by determining alkaline phosphatase activity. The use of tTG as a novel adhesion protein in this way may therefore have considerable potential in forming a stable tissue/biomaterial interface for application in medical devices.