869 resultados para Building Design Process
Resumo:
Even though it has been proved that a fully thermally coupled distillation (TCD) system minimizes the energy used by a sequence of columns, it is well-known that vapor/liquid transfers between different sections produce an unavoidable excess of vapor (liquid) in some of them, increasing both the investment and operating costs. It is proposed here to take advantage of this situation by extracting the extra vapor/liquid and subjecting it to a direct/reverse vapor compression cycle. This new arrangement restores the optimal operating conditions of some of the affected sections with energy savings of around 20–30% compared with conventional TCD columns. Various examples, including the direct and reverse vapor recompression cycles, are presented. Furthermore, in each example, all possible modes of distillation (direct, indirect and Petlyuk distillation) with and without vapor recompression cycles (VRC) are compared to ensure that this approach delivers the best results.
Resumo:
In this paper we explore the implications of pluralist curricula for architectural technology. This includes the potential effects on strengthening the identity of the architectural technology profession and the academic development of the discipline. This latter relies, arguably, on research being explicit in CIAT’s eight mandatory threshold standards. This work concentrates on one of the Chartered Institute of Architectural Technologist’s (CIATS’s) key subjects; 'design', defined as detail design for the architectural technologist. In postulating a philosophy of architectural technology epistemology with a focus on detail design, the pedagogy of architectural detailing in practice and academia is investigated: the associated roles of creativity and conditioning are explored. The interrelationship between conceptual design and construction processes in practice is outlined, identifying the role of the detail design specialist (architectural technologist) in the management of design and production information. Thus is identified the future architectural technologists’ specialisation of nuclear architecture: the total quality construction created by quality of thinking which permeates from and to detail design for assembly/disassembly and production within a collaboratively mechanised AEC team. A theory of nuclear architecture and an associated approach to detail design pedagogy are postulated, aiming to promote a revised perception of the definition of design for the architectural technologist. How this theory can be applied to the creation of a paradigmatic student project, themed on designing for disassembly as a key future focus of ‘Healthy Building’ design is introduced for future exploration. This future research into detail design, the authors propose, should be predicated on the appropriate methodology related to the epistemology of a design-based area of the architectural technology discipline. The roles of Professional, Statutory and Regulatory Bodies (PSRB) in the evaluation and subsequent dissemination of this detail design pedagogy, with the aim of strengthening the architectural technology discipline are emphasised.
Resumo:
Introducing teaching about healthy solutions in buildings and BIM has been a challenge for the University of Alicante. Teaching attached to very tighten study plans conditioned the types of methods that could be used in the past. The worldwide situation of crisis that especially reached Spain and the bursting of the housing bubble generated a lack of employment that reached universities where careers related to construction, Architecture and Architectural Technologist, suffered a huge reduction in the number of students enrolled. In the case of the University of Alicante, students’ enrolment for Architectural Technology reached an 80% reduction. The necessity of a reaction against this situation made the teachers be innovative and use the new Bologna adapted study plans to develop new teaching experiences introducing new concepts: people wellbeing in buildings and BIM. Working with healthy solutions in buildings provided new approaches for building design and construction as an alternative to sustainability. For many years sustainability was the concept that applied to housing gave buildings an added value and the possibility of having viability in a very complex scenario. But after lots of experiences, the approved methodologies for obtaining sustainable housing were ambiguous and at the end, investors, designers, constructors and purchasers cannot find real and validated criteria for obtaining an effective sustainable house. It was the moment to work with new ideas and concepts and start facing buildings from the users’ point of view. At the same time the development of new tools, BIM, has opened a wide range of opportunities, innovative and suggestive, that allows simulation and evaluation of many building factors. This paper describes the research in teaching developed by the University of Alicante to adapt the current study plans, introducing work with healthy solutions in buildings and the use of BIM, with the aim of attracting students by improving their future employability. Pilot experiences have been carried out in different subjects based on the work with projects and case studies under an international frame with the cooperation of different European partner universities. The use of BIM tools, introduced in 2014, solved the problems that appeared in some subjects, mainly building construction, and helped with the evaluation of some healthy concepts that presented difficulties until this moment as knowledge acquired by the students was hard to be evaluated. The introduction of BIM tools: Vasari, FormIt, Revit and Light Control among others, allowed the study of precise healthy concepts and provided the students a real understand of how these different parameters can condition a healthy architectural space. The analysis of the results showed a clear acceptance by the students and gave teachers the possibility of opening new research lines. At the same time, working with BIM tools to obtain healthy solutions in building has been a good option to improve students’ employability as building market in Spain is increasing the number of specialists in BIM with a wider knowledge.
Resumo:
The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al-Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.
Resumo:
Choice of the operational frequency is one of the most responsible parts of any radar design process. Parameters of radars for buried object detection (BOD) are very sensitive to both carrier frequency and ranging signal bandwidth. Such radars have a specific propagation environment with a strong frequency-dependent attenuation and, as a result, short operational range. This fact dictates some features of the radar's parameters: wideband signal-to provide a high range resolution (fractions of a meter) and a low carrier frequency (tens or hundreds megahertz) for deeper penetration. The requirement to have a wideband ranging signal and low carrier frequency are partly in contradiction. As a result, low-frequency (LF) ultrawide-band (UWB) signals are used. The major goal of this paper is to examine the influence of the frequency band choice on the radar performance and develop relevant methodologies for BOD radar design and optimization. In this article, high-efficient continuous wave (CW) signals with most advanced stepped frequency (SF) modulation are considered; however, the main conclusions can be applied to any kind of ranging signals.
Resumo:
Symbiotic design methods aim to take into account technical, social and organizational criteria simultaneously. Over the years, many symbiotic methods have been developed and applied in various countries. Nevertheless, the diagnosis that only technical criteria receive attention in the design of production systems, is still made repeatedly. Examples of symbiotic approaches are presented at three different levels: technical systems, organizations, and the process. From these, discussion points are generated concerning the character of the approaches, the importance of economic motives, the impact of national environments, the necessity of a guided design process, the use of symbiotic methods, and the roles of participants in the design process.
Resumo:
When object databases arrived on the scene some ten years ago, they provided database capabilities for previously neglected, complex applications, such as CAD, but were burdened with one inherent teething problem, poor performance. Physical database design is one tool that can provide performance improvements and it is the general area of concern for this thesis. Clustering is one fruitful design technique which can provide improvements in performance. However, clustering in object databases has not been explored in depth and so has not been truly exploited. Further, clustering, although a physical concern, can be determined from the logical model. The object model is richer than previous models, notably the relational model, and so it is anticipated that the opportunities with respect to clustering are greater. This thesis provides a thorough analysis of object clustering strategies with a view to highlighting any links between the object logical and physical model and improving performance. This is achieved by considering all possible types of object logical model construct and the implementation of those constructs in terms of theoretical clusterings strategies to produce actual clustering arrangements. This analysis results in a greater understanding of object clustering strategies, aiding designers in the development process and providing some valuable rules of thumb to support the design process.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
This thesis presents a new approach to designing large organizational databases. The approach emphasizes the need for a holistic approach to the design process. The development of the proposed approach was based on a comprehensive examination of the issues of relevance to the design and utilization of databases. Such issues include conceptual modelling, organization theory, and semantic theory. The conceptual modelling approach presented in this thesis is developed over three design stages, or model perspectives. In the semantic perspective, concept definitions were developed based on established semantic principles. Such definitions rely on meaning - provided by intension and extension - to determine intrinsic conceptual definitions. A tool, called meaning-based classification (MBC), is devised to classify concepts based on meaning. Concept classes are then integrated using concept definitions and a set of semantic relations which rely on concept content and form. In the application perspective, relationships are semantically defined according to the application environment. Relationship definitions include explicit relationship properties and constraints. The organization perspective introduces a new set of relations specifically developed to maintain conformity of conceptual abstractions with the nature of information abstractions implied by user requirements throughout the organization. Such relations are based on the stratification of work hierarchies, defined elsewhere in the thesis. Finally, an example of an application of the proposed approach is presented to illustrate the applicability and practicality of the modelling approach.
Resumo:
While mobile devices offer many innovative possibilities to help increase the standard of living for individuals with disabilities and other special needs, the process of developing assistive technology, such that it will be effective across a group of individuals with a particular disability, can be extremely challenging. This chapter discusses key issues and trends related to designing and evaluating mobile assistive technology for individuals with disabilities. Following an overview of general design process issues, we argue (based on current research trends) that individuals with disabilities and domain experts be involved throughout the development process. While this, in itself, presents its own set of challenges, many strategies have successfully been used to overcome the difficulties and maximize the contributions of users and experts alike. Guidelines based on these strategies are discussed and are illustrated with real examples from one of our active research projects.
Resumo:
Our paper presents the work of the Cuneiform Digital Forensic Project (CDFP), an interdisciplinary project at The University of Birmingham, concerned with the development of a multimedia database to support scholarly research into cuneiform, wedge-shaped writing imprinted onto clay tablets and indeed the earliest real form of writing. We describe the evolutionary design process and dynamic research and developmental cycles associated with the database. Unlike traditional publications, the electronic publication of resources offers the possibility of almost continuous revisions with the integration and support of new media and interfaces. However, if on-line resources are to win the favor and confidence of their respective communities there must be a clear distinction between published and maintainable resources, and, developmental content. Published material should, ideally, be supported via standard web-browser interfaces with fully integrated tools so that users receive a reliable, homogenous and intuitive flow of information and media relevant to their needs. We discuss the inherent dynamics of the design and publication of our on-line resource, starting with the basic design and maintenance aspects of the electronic database, which includes photographic instances of cuneiform signs, and shows how the continuous review process identifies areas for further research and development, for example, the “sign processor” graphical search tool and three-dimensional content, the results of which then feedback into the maintained resource.
Resumo:
While mobile devices offer many innovative possibilities to help increase the standard of living for individuals with disabilities and other special needs, the process of developing assistive technology, such that it will be effective across a group of individuals with a particular disability, can be extremely challenging. This chapter discusses key issues and trends related to designing and evaluating mobile assistive technology for individuals with disabilities. Following an overview of general design process issues, we argue (based on current research trends) that individuals with disabilities and domain experts be involved throughout the development process. While this, in itself, presents its own set of challenges, many strategies have successfully been used to overcome the difficulties and maximize the contributions of users and experts alike. Guidelines based on these strategies are discussed and are illustrated with real examples from one of our active research projects.
Resumo:
Bed expansion occurs during the operation of gas-fluidized beds and is influenced by particle properties, gas properties and distributor characteristics. It has a significant bearing on heat and mass transfer phenomena within the bed. A method of predicting bed expansion behavior from other fluidizing parameters would be a useful tool in the design process, dispensing with the need for small-scale trials. This study builds on previous work on fluidized beds with vertical inserts to produce a correlation that links a modified particle terminal velocity, minimum fluidizing velocity and distributor characteristics with bed voidage in the relationship with P as the pitch between holes in the perforated distributor plate. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
Optical differentiators constitute a basic device for analog all-optical signal processing [1]. Fiber grating approaches, both fiber Bragg grating (FBG) and long period grating (LPG), constitute an attractive solution because of their low cost, low insertion losses, and full compatibility with fiber optic systems. A first order differentiator LPG approach was proposed and demonstrated in [2], but FBGs may be preferred in applications with a bandwidth up to few nm because of the extreme sensitivity of LPGs to environmental fluctuations [3]. Several FBG approaches have been proposed in [3-6], requiring one or more additional optical elements to create a first-order differentiator. A very simple, single optical element FBG approach was proposed in [7] for first order differentiation, applying the well-known logarithmic Hilbert transform relation of the amplitude and phase of an FBG in transmission [8]. Using this relationship in the design process, it was theoretically and numerically demonstrated that a single FBG in transmission can be designed to simultaneously approach the amplitude and phase of a first-order differentiator spectral response, without need of any additional elements. © 2013 IEEE.