990 resultados para Body suport device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novelty of this study resides in the fabrication of a bio-sensing device, based on the surface acoustic wave (SAW) on a nanocrystalline ZnO film. The ZnO film was deposited using an rf magnetron sputtering at room temperature on silicon. The deposited films showed the c-axisoriented crystallite with grain size of ∼40 nm. The immunosensing device was fabricated using photolithographic protocols on the film. As a model biomolecular recognition and immunosensing, biospecific interaction between a 6-(2,4-dinitrophenyl) aminohexanoic acid (DNP) antigen and its antibody was employed, demonstrating the shifts of resonant frequencies on SAW immunosensing device. The device exhibited a linearity as a function of the antibody concentration in the range of 20∼20,000 ng/ml. © 2009 American Scientific Publishers. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a phase transformation from wurtzite in [0001]-oriented nanorods during uniaxial tensile loading and is the most stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A crystalline structure-load triaxiality map is developed to summarize the relationship between structure and loading.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: