938 resultados para Body measurements
Resumo:
This is a theoretical investigation seeking to learn more about architecture by looking at architectural practice through another discipline. In this research architecture is investigated by examining its relationship with bodies through performance and theatre set design. This thesis aims to build on existing architectural theory, in which an absence of discourse on the body has been identified, by analysing representations of architecture and the body in performance. The research specifically examines the relationship between the body, architecture and authority in performance through the analysis of several performance works.
Resumo:
The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.
Resumo:
Measurements were made of the intake of a WHO/UNICEF glucose-based and a rice cereal-based oral rehydration solution (ORS) by children with diarrhoea. Twenty children who presented to the Children's Outpatient Department at Port Moresby General Hospital with acute diarrhoea and mild dehydration were randomly assigned to an ORS and measurements were taken over the following 3 hours. For data analysis, the patients were paired by weight. Testing the means of the paired samples by t test showed that there was no significant difference between the amount of rice ORS and the amount of glucose ORS taken over 3 hours. The discovery of oral rehydration solution (ORS) for the treatment of diarrheal disease has been heralded as the most important medical discovery of the century. Cereal-based ORS is able to decrease stool output and the duration of diarrheal illness more than the standard glucose-based ORS, through the increased absorption provided by oligosaccharides without the imposition of a greater osmotic penalty. Moreover, the peptides in cereals enhance amino acid and water absorption, while providing nutritional benefits. UNICEF's glucose-based ORS is becoming more widely used in Papua New Guinea (PNG). 20 children aged 6-37 months (mean age, 15 months) who presented to the Children's Outpatient Department at Port Moresby General Hospital during September-October 1993 with acute diarrhea and mild dehydration were randomly assigned to receive either a rice-based ORS or standard glucose ORS, and measurements were taken over the following 3 hours. The patients were paired by weight for analysis. No statistically significant difference was found between the amount of rice ORS and the amount of glucose ORS taken over 3 hours.
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
A finite-state wake model is used to investigate aeromechanical stability of hingeless-rotor helicopters in the ground-contact, hover and trimmed-night conditions. The investigation covers three items: (1) the convergence of the damping with increasing number of wake harmonics for the lag regressing, and body pitch and roll modes; (2) a parametric study of the damping over a range of thrust level, advance ratio and number of blades; and (3) correlations, primarily with the damping and frequency measurements of these lag and body modes. The convergence and parametric studies are conducted in the hover and trimmed-flight conditions; they include predictions from the widely used dynamic inflow model. The correlations are conducted in the ground-contact conditions and include predictions from the dynamic inflow and vortex models; recently, this vortex model is proposed for the axial-flight conditions and is used to investigate the coupled free vibrations of rotor flapping and body modes. The convergence and parametric studies show that a finite-state wake model that goes well beyond the dynamic inflow model is required for fairly converged damping, Moreover, the correlations from the finite-state wake, dynamic inflow and vortex models are generally satisfactory.
Resumo:
Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
As the conventional MOSFET's scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible candidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point'' is introduced, which proves that the charge-based definition is more accurate than the potential based definition.The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by potential based definition while it is monotonous for charge based definition.The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current'' method or simply "TD'' method. The trend of threshold voltage variation is found same in both the cases which support charge-based definition.
Resumo:
As the conventional MOSFETs scaling is approaching the limit imposed by short channel effects, Double Gate (DG) MOS transistors are appearing as the most feasible andidate in terms of technology in sub-45nm technology nodes. As the short channel effect in DG transistor is controlled by the device geometry, undoped or lightly doped body, is used to sustain the channel. There exits a disparity in threshold voltage calculation criteria of undoped-body symmetric double gate transistors which uses two definitions, one is potential based and the another is charge based definition. In this paper, a novel concept of "crossover point" is introduced, which proves that the charge-based definition is more accurate than the potential based definition. The change in threshold voltage with body thickness variation for a fixed channel length is anomalous as predicted by, potential based definition while it is monotonous for change based definition. The threshold voltage is then extracted from drain currant versus gate voltage characteristics using linear extrapolation and "Third Derivative of Drain-Source Current" method or simply "TD" method. The trend of threshold voltage variation is found some in both the cases which support charge-based definition.
Resumo:
In this paper, we present a new approach for velocity vector imaging and time-resolved measurements of strain rates in the wall of human arteries using MRI and we prove its feasibility on two examples: in vitro on a phantom and in vivo on the carotid artery of a human subject. Results point out the promising potential of this approach for investigating the mechanics of arterial tissues in vivo.
Resumo:
Considering ultrasound propagation through complex composite media as an array of parallel sonic rays, a comparison of computer simulated prediction with experimental data has previously been reported for transmission mode (where one transducer serves as transmitter, the other as receiver) in a series of ten acrylic step-wedge samples, immersed in water, exhibiting varying degrees of transit time inhomogeneity. In this study, the same samples were used but in pulse-echo mode, where the same ultrasound transducer served as both transmitter and receiver, detecting both ‘primary’ (internal sample interface) and ‘secondary’ (external sample interface) echoes. A transit time spectrum (TTS) was derived, describing the proportion of sonic rays with a particular transit time. A computer simulation was performed to predict the transit time and amplitude of various echoes created, and compared with experimental data. Applying an amplitude-tolerance analysis, 91.7±3.7% of the simulated data was within ±1 standard deviation (STD) of the experimentally measured amplitude-time data. Correlation of predicted and experimental transit time spectra provided coefficients of determination (R2) ranging from 100.0% to 96.8% for the various samples tested. The results acquired from this study provide good evidence for the concept of parallel sonic rays. Further, deconvolution of experimental input and output signals has been shown to provide an effective method to identify echoes otherwise lost due to phase cancellation. Potential applications of pulse-echo ultrasound transit time spectroscopy (PE-UTTS) include improvement of ultrasound image fidelity by improving spatial resolution and reducing phase interference artefacts.
Evaluation of growth and changes in body composition following neonatal diagnosis of cystic fibrosis
Resumo:
Early deficits in nutritional status that might require specific treatment and early response to nutritional therapy were studied longitudinally in 25 infants with cystic fibrosis (CF) diagnosed by neonatal screening, using anthropometric and research body composition methodology, and evaluation of pancreatic function. At the time of confirmed diagnosis (mean 5.4 weeks), body mass, length, total body fat (TBF), and total body potassium (TBK) were all significantly reduced. Following diagnosis and commencement of therapy there was a normalization of weight, length, and TBK by 6-12 months of age, indicating catch-up growth. But in some individuals the response was incomplete, and as a group, mean total body fat remained significantly lower than normal at 1 year of age. Seven of 25 (28%) were pancreatic sufficient at diagnosis, and all but one had evidence of declining pancreatic function requiring the institution of pancreatic enzyme therapy during the next 1-9 months. The median age of commencement of enzyme therapy was 10 weeks (range 5 weeks to 11 months). These longitudinal assessments emphasize the dynamic changes occurring in absorptive function, body composition, and nutritional status following neonatal diagnosis of cystic fibrosis and may reflect previously described abnormalities of energy metabolism in this age group. Abnormal body composition is evident in most CF infants following diagnosis by neonatal screening but pancreatic damage may still be evolving. We suggest that early active nutritional therapy and surveillance for changes in pancreatic function are warranted in CF infants diagnosed by neonatal screening.
Resumo:
One of the major considerations of improving the management of many chronic diseases has been the realisation of the importance of nutrition, and, in children, the maintenance of normal growth. Cystic Fibrosis (CF) and Myelomeningocele (MMC) are two such disease states in which nutritional status has a significant effect on morbidity.