944 resultados para Biomedical imaging and visualization
Resumo:
The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.
Resumo:
This thesis is based on the integration of traditional and innovative approaches aimed at improving the normal faults seimogenic identification and characterization, focusing mainly on slip-rate estimate as a measure of the fault activity. The L’Aquila Mw 6.3 April 6, 2009 earthquake causative fault, namely the Paganica - San Demetrio fault system (PSDFS), was used as a test site. We developed a multidisciplinary and scale‐based strategy consisting of paleoseismological investigations, detailed geomorphological and geological field studies, as well as shallow geophysical imaging and an innovative application of physical properties measurements. We produced a detailed geomorphological and geological map of the PSDFS, defining its tectonic style, arrangement, kinematics, extent, geometry and internal complexities. The PSDFS is a 19 km-long tectonic structure, characterized by a complex structural setting and arranged in two main sectors: the Paganica sector to the NW, characterized by a narrow deformation zone, and the San Demetrio sector to SE, where the strain is accommodated by several tectonic structures, exhuming and dissecting a wide Quaternary basin, suggesting the occurrence of strain migration through time. The integration of all the fault displacement data and age constraints (radiocarbon dating, optically stimulated luminescence (OSL) and tephrochronology) helped in calculating an average Quaternary slip-rate representative for the PSDFS of 0.27 - 0.48 mm/yr. On the basis of its length (ca. 20 km) and slip per event (up to 0.8 m) we also estimated a max expected Magnitude of 6.3-6.8 for this fault. All these topics have a significant implication in terms of surface faulting hazard in the area and may contribute also to the understanding of the PSDFS seismic behavior and of the local seismic hazard.
Resumo:
La chirurgia con ultrasuoni focalizzati guidati da MRI (MR-g-FUS) è un trattamento di minima invasività, guidato dal più sofisticato strumento di imaging a disposizione, che utilizza a scopo diagnostico e terapeutico forme di energia non ionizzante. Le sue caratteristiche portano a pensare un suo possibile e promettente utilizzo in numerose aree della patologia umana, in particolare scheletrica. L'osteoma osteoide affligge frequentemente pazienti di giovane età, è una patologia benigna, con origine ed evoluzione non chiare, e trova nella termoablazione con radiofrequenza continua sotto guida CT (CT-g-RFA) il suo trattamento di elezione. Questo lavoro ha valutato l’efficacia, gli effetti e la sicurezza del trattamento dell’osteoma osteoide con MR-g-FUS. Sono stati presi in considerazione pazienti arruolati per MR-g-FUS e, come gruppo di controllo, pazienti sottoposti a CT-g-RFA, che hanno raggiunto un follow-up minimo di 18 mesi (rispettivamente 6 e 24 pazienti). Due pazienti erano stati esclusi dal trattamento MR-g-FUS per claustrofobia (2/8). Tutti i trattamenti sono stati portati a termine con successo tecnico e clinico. Non sono state registrate complicanze o eventi avversi correlati all’anestesia o alle procedure di trattamento, e tutti i pazienti sono stati dimessi regolarmente dopo 12-24 ore. La durata media dei trattamenti di MR-g-FUS è stata di 40±21 min. Da valori di score VAS pre-trattamento oscillanti tra 6 e 10 (su scala 0-10), i trattamenti hanno condotto tutti i pazienti a VAS 0 (senza integrazioni farmacologiche). Nessun paziente ha manifestato segni di persistenza di malattia o di recidiva al follow-up. Nonostante la neurolisi e la risoluzione dei sintomi, la perfusione del nidus è stata ritrovata ancora presente in oltre il 70% dei casi sottoposti a MR-g-FUS (4/6 pazienti). I risultati derivati da un'analisi estesa a pazienti più recentemente arruolati confermano questi dati. Il trattamento con MR-g-FUS sembra essere efficace e sicuro nel risolvere la sintomatologia dell'osteoma osteoide.
Resumo:
Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn
Resumo:
L'epilessia frontale notturna (EFN) è caratterizzata da crisi motorie che insorgono durante il sonno. Scopo del progetto è studiare le cause fisiopatologiche e morfo-funzionali che sottendono ai fenomeni motori nei pazienti con EFN e identificare alterazioni strutturali e/o metaboliche mediante tecniche avanzate di Risonanza Magnetica (RM). Abbiamo raccolto una casistica di pazienti con EFN afferenti al Centro Epilessia e dei Disturbi del Sonno del Dipartimento di Scienze Neurologiche, Università di Bologna. Ad ogni paziente è stato associato un controllo sano di età (± 5 anni) e sesso corrispondente. Tutti sono stati studiati mediante tecniche avanzate di RM comprendenti Spettroscopia del protone (1H-MRS), Tensore di diffusione ed imaging 3D ad alta risoluzione per analisi morfometriche. In particolare, la 1H-MRS è stata effettuata su due volumi di interesse localizzati nei talami e nel giro del cingolo anteriore. Sono stati inclusi nell’analisi finale 19 pazienti (7 M), età media 34 anni (range 19-50) e 14 controlli (6 M) età media 30 anni (range 19-40). A livello del cingolo anteriore il rapporto della concentrazione di N-Acetil-Aspartato rispetto alla Creatina (NAA/Cr) è risultato significativamente ridotto nei pazienti rispetto ai controlli (p=0,021). Relativamente all’analisi di correlazione, l'analisi tramite modelli di regressione multipla ha evidenziato che il rapporto NAA/Cr nel cingolo anteriore nei pazienti correlava con la frequenza delle crisi (p=0,048), essendo minore nei pazienti con crisi plurisettimanali/plurigiornaliere. Per interpretare il dato ottenuto è possibile solo fare delle ipotesi. L’NAA è un marker di integrità, densità e funzionalità neuronale. E’ possibile che alla base della EFN ci siano alterazioni metaboliche tessutali in precise strutture come il giro del cingolo anteriore. Questo apre nuove possibilità sull’utilizzo di strumenti di indagine basati sull’analisi di biosegnali, per caratterizzare aree coinvolte nella genesi della EFN ancora largamente sconosciute e chiarire ulteriormente l’eziologia di questo tipo di epilessia.
Resumo:
Background: Hypertrophic cardiomyopathy (HCM) is a common cardiac disease caused by a range of genetic and acquired disorders. The most common cause is genetic variation in sarcomeric proteins genes. Current ESC guidelines suggest that particular clinical features (‘red flags’) assist in differential diagnosis. Aims: To test the hypothesis that left ventricular (LV) systolic dysfunction in the presence of increased wall thickness is an age-specific ‘red flag’ for aetiological diagnosis and to determine long-term outcomes in adult patients with various types of HCM. Methods: A cohort of 1697 adult patients with HCM followed at two European referral centres were studied. Aetiological diagnosis was based on clinical examination, cardiac imaging and targeted genetic and biochemical testing. Main outcomes were: all-cause mortality or heart transplantation (HTx) and heart failure (HF) related-death. All-cause mortality included sudden cardiac death or equivalents, HF and stroke-related death and non-cardiovascular death. Results: Prevalence of different aetiologies was as follows: sarcomeric HCM 1288 (76%); AL amyloidosis 115 (7%), hereditary TTR amyloidosis 86 (5%), Anderson-Fabry disease 85 (5%), wild-type TTR amyloidosis 48 (3%), Noonan syndrome 15 (0.9%), mitochondrial disease 23 (1%), Friedreich’s ataxia 11 (0.6%), glycogen storage disease 16 (0.9%), LEOPARD syndrome 7 (0.4%), FHL1 2 (0.1%) and CPT II deficiency 1 (0.1%). Systolic dysfunction at first evaluation was significantly more frequent in phenocopies than sarcomeric HCM [105/409 (26%) versus 40/1288 (3%), (p<0.0001)]. All-cause mortality/HTx and HF-related death were higher in phenocopies compared to sarcomeric HCM (p<0.001, respectively). When considering specific aetiologies, all-cause mortality and HF-related death were higher in cardiac amyloidosis (p<0.001, respectively). Conclusion: Systolic dysfunction at first evaluation is more common in phenocopies compared to sarcomeric HCM representing an age-specific ‘red flag’ for differential diagnosis. Long-term prognosis was more severe in phenocopies compared to sarcomeric HCM and when comparing specific aetiologies, cardiac amyloidosis showed the worse outcomes.
Resumo:
We report a case of a 78-year-old female with a proximal femur fracture caused by an accidental fall who died suddenly 1h after orthopaedic prosthesis insertion. Post-mortem computed tomography (CT) scan and histological examination of samples obtained with post-mortem percutaneous needle biopsies of both lungs were performed. Analysis of the medical history and the clinical scenario immediately before death, imaging data, and biopsy histology established the cause of death without proceeding to traditional autopsy. It was determined to be acute right ventricular failure caused by massive pulmonary fat embolism. Although further research in post-mortem imaging and post-mortem tissue sampling by needle biopsies is necessary, we conclude that the use of CT techniques and percutaneous biopsy, as additional tools, can offer a viable alternative to traditional autopsy in selected cases and may increase the number of minimally invasive forensic examinations performed in the future.
Resumo:
Tuberculosis (TB) is a frequent health problem. The prevalence of extrapulmonary TB has increased in the last couple of years. Head and neck tuberculosis forms nearly 10% of all extrapulmonary manifestations of the disease. TB of the temporomandibular joint (TMJ) is rare; only a few cases have been reported. The clinical appearance of TB infection of the TMJ has been described as unspecific, resembling arthritis, osteomyelitis, cancer or any kind of chronic joint diseases. This article describes a 22-year-old woman with pain and left preauricular swelling. Magnetic resonance imaging and computed tomography showed an expansive process with destruction of the left condyle and condylar fossa. A fine needle aspiration examination of the swelling showed non-specific granulomatous inflammation. In the following days, a preauricular fistula developed, of which a swab and biopsy specimens were taken. Histological and microbiological examinations revealed an infection with Mycobacterium tuberculosis. The initial antituberculosis treatment consisted of a combination of four antibiotics and could be reduced to two antibiotics in the course of treatment. The treatment was completed successfully after 9 months.
Resumo:
In this paper we propose a variational approach for multimodal image registration based on the diffeomorphic demons algorithm. Diffeomorphic demons has proven to be a robust and efficient way for intensity-based image registration. However, the main drawback is that it cannot deal with multiple modalities. We propose to replace the standard demons similarity metric (image intensity differences) by point-wise mutual information (PMI) in the energy function. By comparing the accuracy between our PMI based diffeomorphic demons and the B-Spline based free-form deformation approach (FFD) on simulated deformations, we show the proposed algorithm performs significantly better.
Resumo:
Angiogenesis is essential for physiological processes as well as for carcinogenesis. New approaches to cancer therapy include targeting angiogenesis. One target is VEGF-A and its receptor VEGFR2. In this study, we sought to investigate pancreatic cancer angiogenesis in a genetically modified VEGFR2-luc-KI mouse.
Resumo:
The incidence and prevalence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have increased in the past 20 years. GEP-NETs are heterogeneous tumors, in terms of clinical and biological features, that originate from the pancreas or the intestinal tract. Some GEP-NETs grow very slowly, some grow rapidly and do not cause symptoms, and others cause hormone hypersecretion and associated symptoms. Most GEP-NETs overexpress receptors for somatostatins. Somatostatins inhibit the release of many hormones and other secretory proteins; their effects are mediated by G protein-coupled receptors that are expressed in a tissue-specific manner. Most GEP-NETs overexpress the somatostatin receptor SSTR2; somatostatin analogues are the best therapeutic option for functional neuroendocrine tumors because they reduce hormone-related symptoms and also have antitumor effects. Long-acting formulations of somatostatin analogues stabilize tumor growth over long periods. The development of radioactive analogues for imaging and peptide receptor radiotherapy has improved the management of GEP-NETs. Peptide receptor radiotherapy has significant antitumor effects, increasing overall survival times of patients with tumors that express a high density of SSTRs, particularly SSTR2 and SSTR5. The multi-receptor somatostatin analogue SOM230 (pasireotide) and chimeric molecules that bind SSTR2 and the dopamine receptor D2 are also being developed to treat patients with GEP-NETs. Combinations of radioactive labeled and unlabeled somatostatin analogues and therapeutics that inhibit other signaling pathways, such as mammalian target of rapamycin (mTOR) and vascular endothelial growth factor, might be the most effective therapeutics for GEP-NETs.
Resumo:
Tooth resorption is among the most common and most challenging problems in feline dentistry It is a progressive disease eventually leading to tooth loss and often root replacement. The etiology of moth resorption remains obscure and to date no effective therapeutic approach is known. The present study is aimed at assessing the reliability of radiographic imaging and addressing the possible involvement of receptor activator of NF kappa B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) in the process of tooth resorption. Teeth from 8 cats were investigated by means of radiographs and paraffin sections followed by immunolabeling. Six cats were diagnosed with tooth resorption based on histopathologic and radiographic findings. Samples were classified according to a four-stage diagnostic system. Radiologic assessment of tooth resorption correlated very strongly with histopathologic findings. Tooth resorption was accompanied by a strong staining with all three antibodies used, especially with anti-RANK and anti-RANKL antibodies. The presence of OPG and RANKL at the resorption site is indicative of repair attempts by fibroblasts and stromal cells. These findings should be extended by further investigations in order to elucidate the pathophysiologic processes underlying tooth resorption that might lead to prophylactic and/or therapeutic measures. J Vet Dent 27(2); 75 - 83, 2010
Resumo:
The diagnosis and management of patients with renovascular disease and hypertension continue to elude healthcare providers. The advent of novel imaging and interventional techniques, and increased understanding of the pathways leading to irreversible renal injury and renovascular hypertension, have ushered in commendable attempts to optimize and finetune strategies to preserve or restore renal function and control blood pressure. Large randomized clinical trials that compare different forms of therapy, and smaller trials that test novel experimental treatments, will hopefully help formulate innovative concepts and tools to manage the patient population with atherosclerotic renovascular disease.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.