987 resultados para Biology, Molecular|Health Sciences, Pharmacology|Chemistry, Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 6,600 people die from acute myelogenous leukemia (AML) on an annual basis. During the past 10 to 15 years, there has been gradual overall improvements in the therapy of this disease, yet the majority of patients with AML succumb to this disease. In an attempt to improve current therapeutic strategies for AML, we became interested in a commercially available drug, dexrazoxane, which protects against anthracycline-induced cardiotoxicity. We have investigated dexrazoxane's (DEX) effects on different tissue types in an effort to determine its unique mechanism of action. Colony forming assays were used to evaluate stem-cell renewal of myeloid cells in vitro and median effect analysis was used to evaluate antagonism, synergism, or additivity. The anthracyclines, doxorubicin, daunorubicin, and idarubicin were individually combined with DEX in leukemic myeloid models to determine if the combination of the two drugs resulted in a synergistic, additive or antagonistic effect. Etoposide and cytosine arabinoside were also evaluated in combination with DEX using the same in vitro model and evaluated similarly. ^ Dexrazoxane in combination with any of the anthracyclines was schedule dependent. The combination of DEX and anthracycline resulted in a greater antitumor effect than anthracycline alone except for DEX administered 24 hours before doxorubicin or daunorubicin. These data were corroborated through median effect analysis. Etoposide in combination with dexrazoxane was synergistic for all combinations, and the combination of cytosine arabinoside and DEX was schedule dependent. In contrast, using an in vivo gastrointestinal model, DEX in combination with doxorubicin was antagonistic for almost all of the ratios used, except for the highest. A Withers' assay was used to evaluate toxicity on jejunal crypt cells. No effect was apparent for the combination of idarubicin and DEX, however, as seen with RZ, DEX in addition to radiation greatly potentiated the cytotoxic effects of radiation on crypts. These paradoxical effects of dexrazoxane were initially enigmatic, but after additional investigation, we propose a model that explains our findings. We conclude that DEX in combination with anthracyclines produces an additive to synergistic antileukemic response and may have therapeutic potential clinically. Additionally, DEX protects the gastrointestinal tract from doxorubicin toxicity, which could have clinical implications for the administration of greater doses of doxorubicin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of recurrent events has been widely discussed in medical, health services, insurance, and engineering areas in recent years. This research proposes to use a nonhomogeneous Yule process with the proportional intensity assumption to model the hazard function on recurrent events data and the associated risk factors. This method assumes that repeated events occur for each individual, with given covariates, according to a nonhomogeneous Yule process with intensity function λx(t) = λ 0(t) · exp( x′β). One of the advantages of using a non-homogeneous Yule process for recurrent events is that it assumes that the recurrent rate is proportional to the number of events that occur up to time t. Maximum likelihood estimation is used to provide estimates of the parameters in the model, and a generalized scoring iterative procedure is applied in numerical computation. ^ Model comparisons between the proposed method and other existing recurrent models are addressed by simulation. One example concerning recurrent myocardial infarction events compared between two distinct populations, Mexican-American and Non-Hispanic Whites in the Corpus Christi Heart Project is examined. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerations that affects over one million people worldwide. To date, 11 autosomal dominant, 13 autosomal recessive, and 5 X-linked forms of retinitis pigmentosa have been identified through linkage analysis, but the disease-causing genes and mutations have been found for only half of these loci. My research uses a positional candidate cloning approach to identify the gene and mutations responsible for one type of autosomal dominant retinitis pigmentosa, RP10. The premise is that identifying the genes and mutations responsible for disease will provide insight into disease mechanisms and provide treatment options. Previous research mapped the RP10 locus to a 5cM region on chromosome 7q31 between markers D7S686 and D7S530. Linkage and fine-point haplotype analysis was used to reduce and refine the RP10 disease interval to a 4cM region located between D7S2471 and a new marker located 45,000bp telomeric of D7S461. In order to identify genes located in the RP10 interval, an extensive EST map was created of this region. Five EST clusters from this map were analyzed to determine if mutations in these genes cause the RP10 form of retinitis pigmentosa. The genomic structure of a known metabotrophic glutamate receptor, GRMS8, was determined first. DNA sequencing of GRM8 in RP10 family members did not identify any disease-causing mutations. Four other EST clusters (A170, A173, A189, and A258) were characterized and determined to be part of the same gene, UBNL1 (ubinuclein-like 1). The full-length mRNA sequence and genomic structure of UBNL1 was determined and then screened in patients. No disease-causing mutations were identified in any of the RP10 family members tested. Recent data made available with the release of the public and Celera genome assemblies indicates that UBNL1 is outside of the RP10 disease region. Despite this complication, characterization of UBNL1 is still important in the understanding of normal visual processes and it is possible that mutations in UBNL1 could cause other forms of retinopathy. The EST map and list of RP10 candidates will continue to aid others in the search for the RP10 gene and mutations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the second most commonly diagnosed cancer among men in the United States. In this study, evidence is presented to support the hypothesis that specific chromosomal aberrations (involving one or more chromosomal regions) are associated with prostate cancer progression from organ-confined to locally advanced tumors and that some aberrations seen in high frequency in metastatic tumors may also be present in a subset of primary tumors. To determine the appropriate approach to address this hypothesis, I have established a modified CGH protocol by microdissection and DOP-PCR for use in detecting chromosomal changes in clinical prostate tumor specimens that is more sensitive and accurate than conventional CGH methods. I have successfully performed the improved CGH protocol to screen for genetic changes of 24 organ confined (pT2) and 21 locally advanced (pT3b) clinical prostate cancer specimens without metastases (N0M0). Comparisons of tumors by stage or Gleason scores following contingency table analysis showed that seven regions of the genome differed significantly between pT2 and pT3b tumors or between low and high Gleason tumors suggesting that these regions may be important in local prostate cancer progression. These included losses on 6p21–25, 6q24–27, 8p, 10q25–26, 15q22–26, and 18cen–q12 as well as gain of 3p13–q13. Multivariate analyses showed that loss of 8p (step1) and loss of 6q25–26 (or 6p21–25 or 10q25–26) (step 2) were predictive of pathologic stage or Gleason groups with 80% accuracy. Additional 5–7 steps in the multivariate model increased the predictive value to 91–95%. Comparison of the CGH data from the primary prostate tumors of this study with those obtained from published literature on metastases and recurrent tumors showed that the clinically more aggressive stage pT3b tumors shared more abnormalities in high frequency with metastases and recurrent tumors than less aggressive stage pT2 tumors. Furthermore, loss of 11cen–q22 was shared only between the primary tumors and metastases while gain of Xcen–q13 and loss of 18cen–q12 were in common between primary and recurrent tumors. These analyses suggest that the multistage model of prostate cancer progression is not linear and that some early primary tumors may be predisposed to metastasize or evolve into recurrent tumors due to the presence of specific genetic alterations. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrins are important as the primary cell adhesion molecule providing information about the extracellular microenvironment to the interior of the cell to influence cellular behavior such as differentiation, proliferation and apoptosis. Apoptotic death due to loss of adhesion is termed anoikis. In this study we have obtained a parental human gastric adenocarcinoma cell line that yielded two variant lines that had differing responses to lack of adhesion. The STAD.APO cell line undergoes apoptosis when denied adherence and the STAD.ARR cell line enters into cell cycle arrest under the identical suspended conditions. We have shown that cyclin A and cyclin D mRNA and protein are down regulated when cells are denied adherence for 24 hours in tissue culture wells previously coated with poly-HEMA. To test whether cyclin A was able to rescue cells from cell cycle arrest and/or anoikis by overriding the cell cycle machinery we transfected the full length cDNA in to each cell type. Surprisingly we found that anoikis and cell cycle arrest due to suspended conditions was not affected by overexpression of cyclin A protein, but that growth under adhered conditions was reduced compared to vector alone control transfectants. Further, we transfected other cell lines; ST7, gastric cancer, MDA-MB-4.35, breast cancer, and HPB T-cell leukemic and in no case were suspended culturing conditions overcome by cyclin A. This result indicates an additional level of regulation for the cell cycle machinery. Additionally, soluble collagen was shown to be able to save from anoikis and also from cell cycle arrest while the β1 specific mAb 33B6 was only able to save from anoikis. Immunofluorescent studies show that soluble collagen creates clusters of β1 with FAK and also β1 with actin in the STAD.ARR cells but does not in the STAD.APO cells. This result indicates that the phenotypes under suspended conditions between these cell lines may diverge at their requirements for integrin ligation. Additionally we characterized the nature of anoikis by showing cytochrome c release, caspase 3, p21 and p53 activation in STAD.APO cells. Thus, our results have implications in the understanding of integrin biology and neoplastic progression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to characterize epidermal hyperplasia overlying malignant melanoma, to determine the mitogenic factor responsible for the induction of this hyperplasia and to investigate its biological consequence. Whether increased keratinocyte proliferation overlying melanoma is due to production of growth factors by the tumor cells or to other mechanisms is unknown. Epidermal hyperplasia overlying human melanoma was found overlying thick (>4.0mm), but not thin (<1.0mm) tumors. Immunostaining of the sections for growth factors related to angiogenesis revealed that epidermal hyperplasia was associated with loss of IFN-β production by the keratinocytes directly overlying the tumors. Since previous studies from our laboratory have demonstrated that exogenous administration of IFN-β negatively regulates angiogenesis, we hypothesize that tumors are able to produce growth factors which stimulate the proliferation of cells in the surrounding tissues. This hyperplasia leads to a decrease in the endogenous negative regulator of angiogenesis, IFN-β. ^ The human melanoma cell line, DM-4 and several of its clones were studied to identify the mitogenic factor for keratinocytes. The expression of TGF-α directly correlated with epidermal hyperplasia in the DM-4 clones. A375SM, a human melanoma cell line that produces high levels of TGF-α, was transfected with a plasmid encoding full-length antisense TGF-α. The parental and transfected cells were implanted intradermally into nude mice. The extent of epidermal hyperplasia directly correlated with expression of TGF-α and decreased production of IFN-β, hence, increased angiogenesis. ^ In the next set of experiments, we determined the role of IFN-β on angiogenesis, tumor growth and metastasis of skin tumors. Transgenic mice containing a functional mutation in the receptor for IFN α/β were obtained. A375SM melanoma cells were implanted both s.c. and i.v. into IFN α/βR −/− mice. Tumors in the IFN α/β R −/− mice exhibited increased angiogenesis and metastasis. IFN α/βR −/− mice were exposed to chronic UV irradiation. Autochthonous tumors developed earlier in the transgenic mice than the wild-type mice. ^ Collectively, the data show that TGF-α produced by tumor cells induces proliferation of keratinocytes, leading to epidermal hyperplasia overlying malignant melanoma associated with loss of IFN-β and enhanced angiogenesis, tumorigenicity and metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, survives within macrophages by altering host cell activation and by manipulating phagosomal trafficking and acidification. Part of the success of M. tuberculosis as a major human pathogen has been attributed to its cell wall, a unique structure largely comprised of mycolic acids. Trehalose 6,6′-dimycolate (TDM) is the major glycolipid component on the surface of the mycobacterial cell wall. This study examines the contribution of TDM during mycobacterial infection of murine macrophages. Virulent M. tuberculosis was chemically depleted of surface-exposed TDM using petroleum ether extraction. Compared to their native counterparts, delipidated M. tuberculosis showed similar growth in broth culture. Bone marrow-derived macrophages (BMM) or the murine macrophage-like cell line J774A.1 were infected with delipidated M. tuberculosis, and responses were compared to cells infected with native M. tuberculosis. Delipidated M. tuberculosis demonstrated significantly decreased viability in macrophages by seven days after infection. Reconstitution of delipidated organisms with pure TDM restored viability. Infection with native M. tuberculosis led to high cellular production of cytokines (IL-1β, IL-6, IL-12, and TNF-α) and chemokines (MCP-1 and MIP-1α); infection with delipidated M. tuberculosis significantly abrogated responses. Cytokine and chemokine production were restored when delipidated organisms were reconstituted with TDM. Responses were specifically induced by TDM; all measured cytokines were elicited from macrophages incubated with TDM-coated beads, while control beads coated with bovine serum albumin (BSA) did not induce cytokine production. Visualization of mycobacterial localization in J774A.1 cells using fluorescence microscopy revealed that delipidated M. tuberculosis were significantly more likely to traffic to acidic vesicles (lysosomes) than native organisms. Reconstitution with TDM restored trafficking to non-acidic vesicles. Similarly, TDM-coated beads demonstrated significantly delayed localization to acidic vesicles compared to BSA-coated beads. In summary, the interaction of TDM with macrophages may regulate the outcome of M. tuberculosis infection by influencing cellular cytokine production and intracellular localization of organisms. This research has elucidated a novel and necessary role for TDM in survival of virulent M. tuberculosis in host macrophages during in vitro infection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac glycoside compounds have traditionally been used to treat congestive heart failure. Recently, reports have suggested that cardiac glycosides may also be useful for treatment of malignant disease. Our research with oleandrin, a cardiac glycoside component of Nerium oleander, has shown it to be a potent inducer of human but not murine tumor cell apoptosis. Determinants of tumor sensitivity to cardiac glycosides were therefore studied in order to understand the species selective cytotoxic effects as well as explore differential sensitivity amongst a variety of human tumor cell lines. ^ An initial model system involved a comparison of human (BRO) to murine (B16) melanoma cells. Human BRO cells were found to express both the sensitive α3 as well as the less sensitive α1 isoform subunits of Na+,K +-ATPase while mouse B16 cells expressed only the α1 isoform. Drug uptake and inhibition of Na+,K+-ATPase activity were also different between BRO and B16 cells. Partially purified human Na+,K+-ATPase enzyme was inhibited by cardiac glycosides at a concentration that was 1000-fold less than that required to inhibit mouse B16 enzyme to the same extent. In addition, uptake of oleandrin and ouabain was 3–4 fold greater in human than murine cells. These data indicate that differential expression of Na+,K+-ATPase isoform composition in BRO and B16 cells as well as drug uptake and total enzyme activity may all be important determinants of tumor cell sensitivity to cardiac glycosides. ^ In a second model system, two in vitro cell culture model systems were investigated. The first consisted of HFU251 (low expression of Na+,K+-ATPase) and U251 (high Na+ ,K+-ATPase expression) cell lines. Also investigated were human BRO cells that had undergone stable transfection with the α1 subunit resulting in an increase in total Na+,K+-ATPase expression. Data derived from these model systems have indicated that increased expression of Na+,K+-ATPase is associated with an increased resistance to cardiac glycosides. Over-expression of Na +,K+-ATPase in tumor cells resulted in an increase of total Na+,K+-ATPase activity and, in turn, a decreased inhibition of Na+,K+-ATPase activity by cardiac glycosides. However, of interest was the observation that increased enzyme expression was also associated with an elevated basal level of glutathione (GSH) within cells. Both increased Na+,K+-ATPase activity and elevated GSH content appear to contribute to a delayed as well as diminished release of cytochrome c and caspase activation. In addition, we have noted an increased colony forming ability in cells with a high level of Na+,K+-ATPase expression. This suggests that Na+,K+-ATPase is actively involved in tumor cell growth and survival. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study investigated data quality and estimated cancer incidence and mortality rates using data provided by Pavlodar, Semipalatinsk and Ust-Kamenogorsk Regional Cancer Registries of Kazakhstan during the period of 1996–1998. Assessment of data quality was performed using standard quality indicators including internal database checks, proportion of cases verified from death certificates only, mortality:incidence ratio, data patterns, proportion of cases with unknown primary site, proportion of cases with unknown age. Crude and age-adjusted incidence and mortality rates and 95% confidence intervals were calculated, by gender, for all cancers combined and for 28 specific cancer sites for each year of the study period. The five most frequent cancers were identified and described for every population. The results of the study provide the first simultaneous assessment of data quality and standardized incidence and mortality rates for Kazakh cancer registries. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Diabetes places a significant burden on the health care system. Reduction in blood glucose levels (HbA1c) reduces the risk of complications; however, little is known about the impact of disease management programs on medical costs for patients with diabetes. In 2001, economic costs associated with diabetes totaled $100 billion, and indirect costs totaled $54 billion. ^ Objective. To compare outcomes of nurse case management by treatment algorithms with conventional primary care for glycemic control and cardiovascular risk factors in type 2 diabetic patients in a low-income Mexican American community-based setting, and to compare the cost effectiveness of the two programs. Patient compliance was also assessed. ^ Research design and methods. An observational group-comparison to evaluate a treatment intervention for type 2 diabetes management was implemented at three out-patient health facilities in San Antonio, Texas. All eligible type 2 diabetic patients attending the clinics during 1994–1996 became part of the study. Data were obtained from the study database, medical records, hospital accounting, and pharmacy cost lists, and entered into a computerized database. Three groups were compared: a Community Clinic Nurse Case Manager (CC-TA) following treatment algorithms, a University Clinic Nurse Case Manager (UC-TA) following treatment algorithms, and Primary Care Physicians (PCP) following conventional care practices at a Family Practice Clinic. The algorithms provided a disease management model specifically for hyperglycemia, dyslipidemia, hypertension, and microalbuminuria that progressively moved the patient toward ideal goals through adjustments in medication, self-monitoring of blood glucose, meal planning, and reinforcement of diet and exercise. Cost effectiveness of hemoglobin AI, final endpoints was compared. ^ Results. There were 358 patients analyzed: 106 patients in CC-TA, 170 patients in UC-TA, and 82 patients in PCP groups. Change in hemoglobin A1c (HbA1c) was the primary outcome measured. HbA1c results were presented at baseline, 6 and 12 months for CC-TA (10.4%, 7.1%, 7.3%), UC-TA (10.5%, 7.1%, 7.2%), and PCP (10.0%, 8.5%, 8.7%). Mean patient compliance was 81%. Levels of cost effectiveness were significantly different between clinics. ^ Conclusion. Nurse case management with treatment algorithms significantly improved glycemic control in patients with type 2 diabetes, and was more cost effective. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic pathogen that is a major health threat in the clinical and community settings. An interesting hallmark of patients infected with S. aureus is that they do not usually develop a protective immune response and are susceptible to reinfection, in part because of the ability of S. aureus to modulate host immunity. The ability to evade host immune responses is a key contributor to the infection process and is critical in S. aureus survival and pathogenesis. This study investigates the immunomodulatory effects of two secreted proteins produced by S. aureus, the MHC class II analog protein (Map) and the extracellular fibrinogen-binding protein (Efb). Map has been demonstrated to modulate host immunity by interfering with T cell function. Map has been shown to significantly reduce T cell proliferative responses and significantly reduce delayed-type hypersensitivity responses to challenge antigen. In addition, the effects of Map on the infection process were tested in a mouse model of infection. Mice infected with Map− S. aureus (Map deficient strain) presented with significantly reduced levels of arthritis, osteomyelitis and abscess formation compared to mice infected with the wild-type Map+S. aureus strain suggesting that Map−S. aureus is much less virulent than Map+S. aureus. Furthermore, Map−S. aureus-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map +S. aureus-infected controls, suggesting that T cells can affect disease outcome following S. aureus infection and Map may attenuate cellular immunity against S. aureus. The extracellular fibrinogen-binding protein (Efb) was identified when cultured S. aureus supernatants were probed with the complement component C3. The binding of C3 to Efb resulted in studies investigating the effects of Efb on complement activation. We have demonstrated that Efb can inhibit both the classical and alternative complement pathways. Moreover, we have shown that Efb can inhibit complement mediated opsonophagocytosis. Further studies have characterized the Efb-C3 binding interaction and localized the C3-binding domain to the C-terminal region of Efb. In addition, we demonstrate that Efb binds specifically to a region within the C3d fragment of C3. This study demonstrates that Map and Efb can interfere with both the acquired and innate host immune pathways and that these proteins contribute to the success of S. aureus in evading host immunity and in establishing disease. ^