996 resultados para Biological radiation effects
Resumo:
New differential linear coherent scattering coefficient, mu(CS), data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07 <= q <= 70.5 nm(-1)), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the mu(CS) reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study uses a molecular-dating approach to test hypotheses about the biogeography of Nothofagus. The molecular modelling suggests that the present-day subgenera and species date from a radiation that most likely commenced between 55 and 40 Myr ago. This rules out the possibility of a reconciled all-vicariance hypothesis for the biogeography of extant Nothofagus. However, the molecular dates for divergences between Australasian and South American taxa are consistent with the rifting of Australia and South America from Antarctica. The molecular dates further suggest a dispersal of subgenera Lophozonia and Fuscospora between Australia and New Zealand after the onset of the Antarctic Circumpolar Current and west wind drift. It appears likely that the New Caledonian lineage of subgenus Brassospora diverged from the New Guinean lineage elsewhere, prior to colonizing New Caledonia. The molecular approach strongly supports fossil-based estimates that Nothofagus diverged from the rest of Fagales more than 84 Myr ago. However, the mid-Cenozoic estimate for the diversification of the four extant subgenera conflicts with the palynological interpretation because pollen fossils, attributed to all four extant subgenera, were widespread across the Weddellian province of Gondwana about 71 Myr ago. The discrepancy between the pollen and molecular dates exists even when confidence intervals from several sources of error are taken into account. In contrast, the molecular age estimates are consistent with macrofossil dates. The incongruence between pollen fossils and molecular dates could be resolved if the early pollen types represent extinct lineages, with similar types later evolving independently in the extant lineages.
Resumo:
In marine invertebrates, the larval and adult stages of many species are often ecologically distinct and as consequence these stages have been traditionally been viewed as physiologically separate. More recently, we have begun to recognize that metamorphosis does not represent a new beginning and events during the larval stage can influence adult performance. I will discuss recent work that suggests that the links between life-history stages are even more pervasive than we currently appreciate. For several species of marine invertebrate, I have found that events during one generation can strongly affect performance in the subsequent generation and events during the haploid phase can affect performance in the diploid phase. All of these links are mediated by changes in offspring size or offspring quality. I will discuss the implication of these strong links for the way we view the ecology of marine invertebrates and the evolution of offspring size in this group.
Resumo:
This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicates (R)). Although a previous study demonstrated positive effects of Biosilicate (R) on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass (R) 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate group (R) (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate (R) and Bioglass (R) 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate (R) was superior to Bioglass (R) 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate (R) group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate (R) has good bone-forming and bone-bonding properties. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 978: 139-147, 2011.
Resumo:
High-frequency beach water table fluctuations due to wave run-up and rundown have been observed in the field [Waddell, 1976]. Such fluctuations affect the infiltration/exfiltration process across the beach face and the interstitial oxygenation process in the beach ecosystem. Accurate representation of high-frequency water table fluctuations is of importance in the modeling of (1) the interaction between seawater and groundwater, more important, the effects on swash sediment transport and (2) the biological activities in the beach ecosystem. Capillarity effects provide a mechanism for high-frequency water table fluctuations. Previous modeling approaches adopted the assumption of saturated flow only and failed to predict the propagation of high-frequency fluctuations in the aquifer. In this paper we develop a modified kinematic boundary condition (kbc) for the water table which incorporates capillarity effects. The application of this kbc in a boundary element model enables the simulation of high-frequency water table fluctuations due to wave run-up. Numerical tests were carried out for a rectangular domain with small-amplitude oscillations; the behavior of water table responses was found to be similar to that predicted by an analytical solution based on the one-dimensional Boussinesq equation. The model was also applied to simulate the water table response to wave run-up on a doping beach. The results showed similar features of water table fluctuations observed in the field. In particular, these fluctuations are standing wave-like with the amplitude becoming increasingly damped inland. We conclude that the modified kbc presented here is a reasonable approximation of capillarity effects on beach water table fluctuations. However, further model validation is necessary before the model can confidently be used to simulate high-frequency water table fluctuations due to wave run-up.
Resumo:
Specific leaf nitrogen (SLN, g/m(2)) is known to affect radiation use efficiency (RUE, g/MJ) in different crops, However, this association and importance have not been well established over a range of different nitrogen regimes for held-grown sunflower (Helianthus annuus L.). An experiment was conducted to investigate different combinations and rates of applied nitrogen on SLN, RUE, and growth of sunflower, A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and treated with five combinations of applied nitrogen, Greater nitrogen increased biomass, grain number, and yield, but did not affect harvest index energy-corrected for oil (0.4) or canopy extinction coefficient (0.88), Decreases in biomass accumulation under low nitrogen treatments were associated,vith reductions in leaf area index (LAI) and light interception, When SLN and RUE were examined together, both were less in the anthesis to physiological maturity period, but relatively stable between bud visible and anthesis, However, the effects of canopy SLN on RUE were confounded by high SLN in the top of the canopy and the crop maintaining SLN by reducing LAI, Measurements of leaf CO2 assimilation and theoretical analyses of RUE supported that RUE was related to SLN, The major effect of nitrogen on early growth of sunflower was mediated by leaf area and the distribution of SLN in the canopy rather than direct effects of canopy SLN on RUE alone. Greater responses of RUE to SLN are more evident later in growth, and may be related to the demand of nitrogen by the grain.
Resumo:
The level of incident radiation and the proportion of radiation that is diffuse affects radiation use efficiency (RUE) in crops, However, the degree of this effect, and its importance to growth and yield of sunflower (Helianthus annuus L.) have not been established. A field experiment was conducted to investigate the effects of radiation environment on RUE, growth, and yield of sunflower. A fully irrigated crop was sown on an alluvial-prairie soil (Fluventic Haplustoll) and was exposed to three distinct radiation environments. In two treatments, the level of incident radiation was reduced by 14 and 20% by suspending tao different types of polyethylene plastic films well above the crop. In addition to the reductions in incident radiation, the proportion of radiation that was diffuse was increased by about 14% in these treatments. Lower incident radiation and increased proportion of diffuse radiation had no effect on total biomass, phenology, leaf area, and the canopy light extinction coefficient (k = 0.89). However, yield was reduced in shaded treatments due to smaller grain size and lower harvest index. Although crop RUE measured over the entire crop cycle (1.25 g/MJ) did not differ significantly among treatments, there was a trend where RUE compensated for less intercepted incident radiation. Theoretical derivations of the response of RUE to different levels of incident radiation supported this finding. Shaded sunflower crops have the ability to produce biomass similar to unshaded crops by increasing RUE, but have lower harvest indices.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
Introduction: The association between serological markers with the need of biological therapy for early rheumatoid arthritis (ERA) is not known, with few available data addressing this question. Objectives: To prospectively evaluate a cohort of patients with ERA (less than 12 months of symptoms) in order to determine the possible association between serological markers (rheumatoid factor (RF), anti-cyclic citrullinated peptide antibodies (anti-CCP), and citrullinated anti-vimentin (anti-Sa) with parameters of therapeutic outcome (this later defined by the need of introducing biological therapy). Patients and methods: Forty patients with early RA were evaluated at the time of diagnosis and have been followed for 3 years, in use of standardized therapeutic treatment. Demographic and clinical data were recorded, as well as serology tests (ELISA) for RF (IgM, IgG and IgA), anti-CCP (CCP2, CCP3 and CCP3.1) and anti-Sa in the initial evaluation and at 3, 6, 12, 18, 24 and 36 months of follow-up. As outcomes of the RA development, the need or not for biological therapy during the follow-up period were considered. Comparisons were made through the Student t test, mixed-effects regression analysis and analysis of variance (significance level of 5%). Results: The mean age was 45 (+/- 12) years; a female predominance was observed (90%). At the time of diagnosis, RF was observed in 50% of cases (RF IgA - 42%, RF IgG - 30% and RF IgM - 50%), anti-CCP in 50% (no difference between CCP2, CCP3 and CCP3. 1) and anti-Sa in 10%. After 3 years, no change in the RF prevalence neither in the anti-CCP was observed, but the anti-Sa increased to 17.5% (p = 0.001). Biological therapy was necessary in 22.5% of patients. The mean RF IgA and anti-CCP 2 levels during the 3 years were higher among patients who needed biological therapy (p <0.05 for both). Conclusion: Higher titles of RF and anti-CCP over time were associated with the need for biological therapy.
Resumo:
Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
Objectives: To determine if systemic stress affects the biological reactions occurring during orthodontic tooth movement. Methods: Four groups of male 10 week-old Wistar rats were used. Group A animals (N=10) were restrained for one hour per day for 40 days; Group B animals (N=10) were restrained for one hour per day for three days; Group C (N=10) and Group D (N=8) animals were unrestrained. The upper left first molars in the rats in Groups A (long-term stress), B (short-term stress) and C (control) were moved mesially during the last 14 days of the experiment. The animals in Group D (N=8) were used for body weight and hormonal dosage comparisons only. They were not subjected to any stress and did not have appliances fitted. All animals were killed at 18 weeks of age and blood collected for measurement of plasma corticosterone. Tooth movement was measured with an electronic caliper. The right and left hemi-maxillae of five rats from each group were removed and the number of tartrate-resistant acid phosphatase (TRAP) positive cells, defined as osteoclasts, adjacent to the mesial roots of the upper first molars counted. The contralateral side in each animal served as the control (split-mouth design). Results: Corticosterone levels were significantly higher in the stressed groups (Groups A and B) than in the control group (Group C). Tooth movement was significantly greater in Group A (long-term stress) compared with Group B (short-term stress) and Group C (control), which did not differ from each other. There were significantly more osteoclasts in the long-term stress group than in the short-term stress and control groups. Conclusion: Persistent systemic stress increases bone resorption during orthodontic tooth movement. Systemic stress may affect the rate of tooth movement during orthodontic treatment.
Resumo:
Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus - nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dIPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively. Male Wistar rats received acute or chronic (21 days) injections of saline or clomipramine (10 or 20 mg/kg/day) and were exposed to a live cat. The animals exhibited a robust defensive reaction accompanied by an increase in the number of Fos- and doublestained neurons in the dlPAG, suggesting that cat exposure activates NO-producing neurons. Such effects were not significantly attenuated by clomipramine treatments. The intensity of fear reaction correlated with the intensity of neural staining in the dlPAG, regardless the drug treatment. Thus, the present results reinforce the hypothesis that NO may coordinate defensive responses in the dIPAG and indicate that this mechanism may not be modulated by a serotonin re-uptake inhibitor. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: This study examined the effect of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task. Methods: Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design. Results: Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms. Conclusions: These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.
Resumo:
The successful treatment of paediatric malignancies by multimodal therapy has improved outcomes for children with cancer, especially those with acute lymphoblastic leukaemia (ALL). Second malignant neoplasms, however, represent a serious complication after treatment. Depending on dosage, 2-12% of patients treated with topoisomerase II inhibitors and/or alkylating agents develop treatment-related acute myeloid leukaemia characterized by translocations at 11q23. Our goal was to study MLL rearrangements in peripheral lymphocytes using cytogenetic and molecular methods in order to evaluate the late effects of cancer therapy in patients previously treated for childhood ALL. Chromosomal rearrangements at 11q23 were analysed in cytogenetic preparations from 49 long-term ALL survivors and 49 control individuals. Patients were subdivided depending on the inclusion or omission of topoisomerase II inhibitors (VP-16 and/or VM-26) in their treatment protocol. The statistical analysis showed significant (P = 0.007) differences between the frequency of translocations observed for the groups of patients and controls. These differences were also significant (P = 0.006) when the groups of patients (independent of the inclusion of topoisomerase II inhibitors) and controls were compared (P = 0.006). The frequencies of extra signals, however, did not differ between groups of patients and controls. Several MLL translocations were detected and identified by inverse polymerase chain reaction, followed by cloning and sequencing. Thirty-five patients (81%) presented putative translocations; among those, 91% corresponded with t(4;11) (q21;q23), while the other 9% corresponded with t(11;X), t(8;11)(q23;q23) and t(11;16). Our results indicate an increase in MLL aberrations in childhood ALL survivors years after completion of therapy. The higher frequency in this cohort might be associated with therapy using anti-tumoural drugs, independent of the inclusion of topoisomerase II inhibitors. Even though the biological significance of these rearrangements needs further investigation, they demonstrate a degree of genome instability, indicating the relevance of cytogenetic and molecular studies during the follow-up of patients in complete clinical remission.