957 resultados para Bio-hombre


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In uncemented Ti6Al4V hip implants, the bone-stem interface is subjected to cyclic loading motion driven by the daily activities of the patients, which may lead to the complete failure of the implant in the long term. It may also compromise the proliferation and differentiation processes of osteoblastic cells (bone-forming cells). The main objective of this work is to approach for the first time the role of these organic materials on the bio-tribocorrosion mechanisms of cultured Ti6Al4V alloys. The colonized materials with MG63 osteoblastic-like cells were characterized through cell viability/proliferation and enzymatic activity. Tribocorrosion tests were performed under a reciprocating sliding configuration and low contact pressure. Electrochemical techniques were used to measure the corrosion kinetics of the system, under free potential conditions. All tests were performed at a controlled atmosphere. The morphology and topography of the wear scar were evaluated. The results showed that the presence of an osteoblastic cell layer on the implant surface significantly influences the tribocorrosion behavior of Ti6Al4V alloy. It was concluded that the cellular material was able to form an extra protective layer that inhibits further wear degradation of the alloy and decreases its corrosion tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be correlated to its potent antioxidant capacity. Novel maghemite (gamma-Fe3O4) nanoparticles, characterized by a diameter of about 10 nm and possessing peculiar colloidal properties and surface interactions, called Surface Active Maghemite Nanoparticles (SAMN), were superficially modified with curcumin by simple incubation, due to the presence of under-coordinated Fe(III) atoms on nanoparticle surface. The resulting curcumin-modified SAMNs (SAMN@curcumin) were characterized by transmission electron microscopy (TEM), FTIR, Mossbauer, EPR and UV-Vis spectroscopy. The redox properties of bound curcumin were tested by electrochemistry. Finally, SAMN@curcumin was studied in the presence of different electroactive substances, namely hydroquinone, NADH and ferrocyanide, in order to assess its electrochemical behavior. Moreover, SAMN@curcumin was electrochemically tested in the presence of one of the most diffuse reactive oxygen specie, such as hydrogen peroxide, demonstrating its stability. SAMN@curcumin in which curcumin is firmly bound, but still retaining its redox features represents a feasible adduct: a magnetically drivable nano-bio-conjugate mimicking free Curcumin redox behavior. The proposed nanostructured material could be exploited as magnetic drivable curcumin vehicle for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High molecular weight semi crystalline thermoplastic poly(ester urethanes), TPEUs, were prepared from a vegetable oil-based diisocyanate, aliphatic diol chain extenders and poly(ethylene adipate) macro diol using one-shot, pre-polymer and multi-stage polyaddition methods. The optimized polymerization reaction achieved ultra-high molecular weight TPEUs (>2 million as determined by GPC) in a short time, indicating a very high HPMDI diol reactivity. TPEUs with very well controlled hard segment (HS) and soft segment (SS) blocks were prepared and characterized with DSC, TGA, tensile analysis, and WAXD in order to reveal structure property relationships. A confinement effect that imparts elastomeric properties to otherwise thermoplastic TPEUs was revealed. The confinement extent was found to vary predictably with structure indicating that one can custom engineer tougher polyurethane elastomers by "tuning" soft segment crystallinity with suitable HS block structure. Generally, the HPMDI-based TPEUs exhibited thermal stability and mechanical properties comparable to entirely petroleum-based TPEUs. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated a nonlinear programming excel workbook PPFR (http://www.fmva.unesp.br/ppfr) for determining the optimum nutrient density and maximize margins. Two experiments were conducted with 240 one-day-old female chicks and 240 one-day-old male chicks distributed in 48 pens (10 chicks per pen, 4 replicates) in a completely randomized design. The treatments include the average price history (2009s and 2010s) for broiler increased and decreased by 25% or 50% (5 treatments to nonlinear feed formulation) and 1 linear feed formulation. Body gain, feed intake, feed conversion were measured at 21, 42 and 56 d of age. Chicks had ad libitum access to feed and water in floor pens with wood shavings as litter. The bio-economic Energy Conversion [BEC= (Total energy intake*Feed weighted cost per kg)/ (Weight gain*kg live chicken cost)] was more sensitive for measuring the bio-economic performance for broilers, and especially with better magnitude. This allowed a better assessment of profitability, the rate of growth and not just energy consumption, the production of broilers, by incorporating energy consumption, allowing for more sensitivity to the new index (BEC). The BEC was demonstrated that the principle of nonlinear formulation minimizes losses significantly (P<0.05), especially under unfavorable conditions the price of chicken in the market. Thus, when considering that a diet of energy supply shows up as the most expensive item of a formulation, it should compose necessarily the formula proposed for a bio-economic index. Thus, there is need to evaluate more accurately, not only the ingredients of a ration, but the impact of nutrients on the stability of a solution, mainly due to the energy requirement. This strategy promotes better accuracy for decision making under conditions of uncertainty, to find alternative post-formulation. From the above, both weight gain and feed conversion, as traditional performance indicators, cannot finalize or predict a performance evaluation of an economic system creating increasingly intense and competitive. Thus, the energy concentration of the diet becomes more important definition to feed formulator, by directly impact profit activity by interactions with the density of nutrients. This allowed a better evaluation of profitability, the rate of energy performance for broilers, by incorporating the energy consumption formula, allowing more sensitivity to the new index (BEC). These data show that nonlinear feed formulation is a toll to offer new opportunities for poultry production to improved profitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor–solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 °C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)