979 resultados para Binding Peptides
Resumo:
On the basis of serologic cross-reactivity, three immunoglobulin classes homologous to human IgG, IgM and IgA were identified in two species of acquatic mammal representing the orders Cetacea (dolphin) and Pinnipedea (sea lion). Molecular size was estimated by sucrose density gradient ultracentrifugation and Sephadex G-200 chromatography, indicating a 7S IgG, 19S IgM and heterogeneous serum IgA. Human secretory component was readily bound to the IgM of both species and to an apparently lesser extent to the larger molecular size populations of IgA. No binding was observed with IgG. Several antisera specific for human γ-chains gave a single precipitin line with the sea lion IgG but when made to react with dolphin serum produced two lines, suggesting the presence of two different subclasses of IgG in this species.
Resumo:
Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.
Resumo:
Nicotine has been shown to stimulate the release of vasopressin and to cause significant hemodynamic changes. The mechanisms leading to enhanced vasopressin secretion and the vascular consequences of the high plasma vasopressin levels during nicotine infusion have not yet been determined. Therefore, the purposes of the present study were 1) to examine in normal conscious rats the role of opioid peptides in the nicotine-induced increase in plasma vasopressin levels and 2) to assess the role of vasopressin in the hemodynamic effects of nicotine (20 micrograms/min for 15 min) using a specific V1 antagonist of the vascular actions of vasopressin. Plasma vasopressin levels were significantly increased in the nicotine-treated animals (39.5 +/- 10 vs. 3.7 +/- 0.6 pg/ml in the controls, P less than .01). Pretreatment with naloxone, an antagonist of opioids at their receptors, did not reduce the vasopressin levels (47.7 +/- 9 pg/ml). Nicotine also increased mean blood pressure (122.5 +/- 2.5 to 145.2 +/- 3.3 mm Hg, P less than .01) and decreased heart rate (461 +/- 6 to 386 +/- 14.5 beats/min, P less than .05). Administration of the vasopressin V1 antagonist before the nicotine infusion did not affect the systemic hemodynamics or the regional blood flow distribution, as assessed by radiolabeled microspheres. Thus, these results suggest that the nicotine-induced secretion of vasopressin is not mediated by opioid receptors and that the high plasma vasopressin levels do not exert any significant hemodynamic effect on cardiac output or blood flow distribution.
Resumo:
The new angiotensin-converting enzyme (ACE) inhibitor idrapril acts by binding the catalytically important zinc ion to a hydroxamic group. We investigated its pharmacodynamic and pharmacokinetic properties in 8 healthy men: Increasing doses of 1, 5, and 25 mg idrapril as well as placebo or 5 mg captopril were administered intravenously (i.v.) at 1-week intervals. Six of the subjects received 100 mg idrapril orally (p.o.) last, and two ingested oral placebo as a double-blind control. Blood pressure (BP) and heart rate (HR) remained unchanged. No serious side effects were observed. ACE inhibition in vivo was evaluated by changes in the ratio of specifically measured plasma angiotensin II (AngII) and AngI concentrations determined by high-performance liquid chromatography/radioimmunoassay (HPLC/RIA) techniques. Plasma ACE activity in vitro was estimated by radioenzymatic assay; it was suppressed by > or = 93% at 15 min after injection of 25 mg idrapril or 5 mg captopril and by 96% 2 h after idrapril intake. Mean AngII levels were decreased dose dependently at 15 min after idrapril injections. At the same time, plasma renin activity (PRA) and AngI increased according to the doses. The AngII/AngI ratio was clearly related to plasma idrapril levels (r = -0.88, n = 60). Oral idrapril inhibited ACE maximally at 1-4 h after dosing, when < 7% of initial ACE activity was observed in vitro and in vivo. Idrapril is a safe and efficient ACE inhibitor in human subjects. It is well absorbed orally. Besides having a slightly slower onset of action, idrapril has pharmacodynamic effects comparable to those of captopril.
Resumo:
Conformational changes of channel activation: Five enhanced green fluorescent protein (EGFP) molecules (green cylinders) were integrated into the intracellular part of the homopentameric ionotropic 5-HT3 receptor. This allowed the detection of extracellular binding of fluorescent ligands (?) to EGFP by FRET, and also enabled the quantification of agonist-induced conformational changes in the intracellular region of the receptor by homo-FRET between EGFPs. The approach opens novel ways for probing receptor activation and functional screening of therapeutic compounds.
Resumo:
RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L119GF --> AAA mutation affects the mode of RDM1 binding to single-stranded DNA.
Resumo:
Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.
Resumo:
AIMS/HYPOTHESIS: Chronic exposure of pancreatic beta cells to proinflammatory cytokines leads to impaired insulin secretion and apoptosis. ARE/poly(U)-binding factor 1 (AUF1) belongs to a protein family that controls mRNA stability and translation by associating with adenosine- and uridine-rich regions of target messengers. We investigated the involvement of AUF1 in cytokine-induced beta cell dysfunction. METHODS: Production and subcellular distribution of AUF1 isoforms were analysed by western blotting. To test for their role in the control of beta cell functions, each isoform was overproduced individually in insulin-secreting cells. The contribution to cytokine-mediated beta cell dysfunction was evaluated by preventing the production of AUF1 isoforms by RNA interference. The effect of AUF1 on the production of potential targets was assessed by western blotting. RESULTS: MIN6 cells and human pancreatic islets were found to produce four AUF1 isoforms (p42>p45>p37>p40). AUF1 isoforms were mainly localised in the nucleus but were partially translocated to the cytoplasm upon exposure of beta cells to cytokines and activation of the ERK pathway. Overproduction of AUF1 did not affect glucose-induced insulin secretion but promoted apoptosis. This effect was associated with a decrease in the production of the anti-apoptotic proteins, B cell leukaemia/lymphoma 2 (BCL2) and myeloid cell leukaemia sequence 1 (MCL1). Silencing of AUF1 isoforms restored the levels of the anti-apoptotic proteins, attenuated the activation of the nuclear factor-κB (NFκB) pathway, and protected the beta cells from cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: Our findings point to a contribution of AUF1 to the deleterious effects of cytokines on beta cell functions and suggest a role for this RNA-binding protein in the early phases of type 1 diabetes.
Resumo:
Multiple antigen peptide systems (MAPs) allow the incorporation of various epitopes in to a single synthetic peptide immunogen. We have characterized the immune response of BALB/c mice to a series of MAPs assembled with different B and T cell epitopes derived from the Plasmodium vivax circumsporozoite (CS) protein. A B-cell epitope from the central repeat domain and two T-cell epitopes from the amino and carboxyl flanking regions were used to assembled eight different MAPs. An additional universal T cell epitope (ptt-30) from tetanus toxin protein was included. Immunogenicity in terms of antibody responses and in vitro T lymphocyte proliferation was evaluated. MAPs containing B and T cell epitopes induced high titers of anti-peptides antibodies, which recognized the native protein on sporozoites as determined by IFAT. The antibody specificity was also determined by a competitive inhibition assay with different MAPs. A MAP containing the B cell epitope (p11) and the universal epitope ptt-30 together with another composed of p11 and the promiscuous T cell epitope (p25) proved to be the most immunogenic. The strong antibody response and specificity for the cognate protein indicates that further studies designed to assess the potential of these proteins as human malaria vaccine candidates are warranted.
Resumo:
We have shown previously that HLA-A*0201 melanoma patients can frequently develop a CTL response to the cancer testis antigen NY-ESO-1. In the present study, we have analyzed in detail the relative antigenicity and in vitro immunogenicity of natural and modified NY-ESO-1 peptide sequences. The results of this analysis revealed that, although suboptimal for binding to the HLA-A*0201 molecule, peptide NY-ESO-1 157-165 is, among natural sequences, very efficiently recognized by specific CTL clones derived from three melanoma patients. In contrast, peptides NY-ESO-1 157-167 and NY-ESO-1 155-163, which bind very strongly to HLA-A*0201, are recognized less efficiently. In agreement with previous data, substitution of peptide NY-ESO-1 157-165 COOH-terminal C with various other amino acids resulted in a significantly increased binding to HLA-A*0201 molecules as well as in an increased CTL recognition, although variable at the clonal level. Among natural peptides, NY-ESO-1 157-165 and NY-ESO-1 157-167 exhibited good in vitro immunogenicity, whereas peptide NY-ESO-1 155-163 was poorly immunogenic. The fine specificity of interaction between peptide NY-ESO-1 C165A, HLA-A*0201, and T-cell receptor was analyzed at the molecular level using a series of variant peptides containing single alanine substitutions. The findings reported here have significant implications for the formulation of NY-ESO-1-based vaccines as well as for the monitoring of either natural or vaccine-induced NY-ESO-1-specific CTL responses in cancer patients.
Resumo:
Wild type and mutant toxins of Bacillus thuringiensis delta-endotoxins were examined for their binding to midgut brush border membrane vesicles (BBMV). CryIAa, CryIAb, and CryIAc were examined for their binding to Gypsy moth (Lymantria dispar) BBMV. The binding of CryIAa and CryIAc was directly correlated with their toxicity, while CryIAb was observed to have lower binding than expected from its toxicity. The latter observation confirms the observation of Wolfersberger (1990). The "rule" of reciprocity of binding and toxicity is apparently obeyed by CryIAa and CryIAc, but broken by CryIAb on L. dispar. Alanine substitutions were made in several positions of the putative loops of CryIAa to test the hypothesis that the loops are intimately involved in binding to the receptor. The mutant toxins showed minor shifts in heterologous binding to Bombyx mori BBMV, but not enough to conclude that the residues chosen play critical roles in receptor binding.
Resumo:
Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.
Resumo:
El GB virus C (GBV-C) o virus de l'hepatitis G (HGV) es un virus format per una única cadena de RNA que pertany a la familia Flaviviridae. En els últims anys, s'han publicat nombrosos treballs en els quals s'associa la coinfecció del GBV-C i del virus de la immunodeficiència humana (VIH) amb una menor progressió de l'esmentada malaltia així com amb una major supervivència dels pacients una vegada que la SIDA s'ha desenvolupat. El mecanisme pel qual el virus GBV-C/HGV exerceix un “efecte protector” en els pacients amb VIH encara no està descrit. L’estudi de la interacció entre els virus GBVC/HGV i VIH podria donar lloc al desenvolupament de nous agents terapèutics per al tractament de la SIDA.Treballs recents mostren com la capacitat inhibitòria del virus del GBV-C/HGV és deguda a la seva glicoproteina estructural E2. S’ha vist que aquesta proteina seria capaç d’inhibir la primera fase de replicació de VIH, així com la unió i la fusió amb les membranes cel•lulars. Sobre la base d’aquests estudis, l’objectiu d’aquest treball ha estat seleccionar inhibidors del pèptid de fusió del VIH utilitzant pèptids sintètics de la proteina E2 del GBV-C/HGV. El treball realitzat ha consistit en estudiar, utilitzant assajos biofísics de leakage i de lipid mixing, la capacitat dels pèptids de la proteina estructural del virus del GBV-C/HGV per inhibir la interacció i el procés de desestabilització de membranes induïdes pel pèptid de fusió de la glicoproteina de l’embolcall, GP41, del VIH. Aquests assajos, com es descriu en treballs anteriors, han resultat útils per a la selecció i la identificació de compostos amb activitat específica anti-GP41. Es pot afirmar que efectivament els pèptids seleccionats de la proteina E2 del virus del GBV-C/HGV inhibeixen l’activitat del pèptid de fusió del VIH probablement com a consequència d’un canvi conformacional en aquest darrer.
Resumo:
Vaccinal and wild strains of Newcastle Disease virus (NDV) were analyzed for cell receptor binding and fusogenic biological properties associated with their HN (hemagglutinin-neuraminidase) and F (fusion protein) surface structures respectively. The evaluation of the biological activities of HN and F was carried out respectively by determination of hemagglutinating titers and hemolysis percentages, using erythrocytes from various animal origins at different pH values. Significant differences in hemagglutination titers for some strains of NDV were detected, when interacting with goose, sheep, guinea-pip and human "O" group erythrocytes at neutral pH. Diversity of hemolysis percentagens was observed between different NDV strains at acid pH. These analysis were developed to evaluate particular aspects of the actual influence of the receptor specifity and pH on the receptor binding and fusogenic processes of Newcastle Disease viruses.
Resumo:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.