934 resultados para Bees - Foraging behaviour
Resumo:
Knowledge of the relative importance of genetics and behavioural copying is crucial to appraise the evolvability of behavioural consistencies. Yet, genetic and non-genetic factors are often deeply intertwined, and experiments are required to address this issue. We investigated the sources of variation of adult antipredator behaviour in the Alpine swift (Apus melba) by making use of long-term behavioural observations on parents and cross-fostered offspring. By applying an 'animal model' approach to observational data, we show that antipredator behaviour of adult Alpine swifts was significantly repeatable over lifetime (r = 0.273) and heritable (h(2) = 0.146). Regression models also show that antipredator behaviours differed between colonies and sexes (females were more tame), and varied with the hour and year of capture. By applying a parent-offspring regression approach to 59 offspring that were exchanged as eggs or hatchlings between pairs of nests, we demonstrate that offspring behaved like their biological parents rather than like their foster parents when they were adults themselves. Those findings provide strong evidence that antipredator behaviour of adult Alpine swifts is shaped by genetics and/or pre-hatching maternal effects taking place at conception but not by behavioural copying.
Resumo:
A major challenge in studying social behaviour stems from the need to disentangle the behaviour of each individual from the resulting collective. One way to overcome this problem is to construct a model of the behaviour of an individual, and observe whether combining many such individuals leads to the predicted outcome. This can be achieved by using robots. In this review we discuss the strengths and weaknesses of such an approach for studies of social behaviour. We find that robots-whether studied in groups of simulated or physical robots, or used to infiltrate and manipulate groups of living organisms-have important advantages over conventional individual-based models and have contributed greatly to the study of social behaviour. In particular, robots have increased our understanding of self-organization and the evolution of cooperative behaviour and communication. However, the resulting findings have not had the desired impact on the biological community. We suggest reasons for why this may be the case, and how the benefits of using robots can be maximized in future research on social behaviour.
Resumo:
ABSTRACT: INTRODUCTION: Primitively eusocial halictid bees are excellent systems to study the origin of eusociality, because all individuals have retained the ancestral ability to breed independently. In the sweat bee Halictus scabiosae, foundresses overwinter, establish nests and rear a first brood by mass-provisioning each offspring with pollen and nectar. The mothers may thus manipulate the phenotype of their offspring by restricting their food provisions. The first brood females generally help their mother to rear a second brood of males and gynes that become foundresses. However, the first brood females may also reproduce in their maternal or in other nests, or possibly enter early diapause. Here, we examined if the behavioural specialization of the first and second brood females was associated with between-brood differences in body size, energetic reserves and pollen provisions. RESULTS: The patterns of variation in adult body size, weight, fat content and food provisioned to the first and second brood indicate that H. scabiosae has dimorphic females. The first-brood females were significantly smaller, lighter and had lower fat reserves than the second-brood females and foundresses. The first-brood females were also less variable in size and fat content, and developed on homogeneously smaller pollen provisions. Foundresses were larger than gynes of the previous year, suggesting that small females were less likely to survive the winter. CONCLUSIONS: The marked size dimorphism between females produced in the first and second brood and the consistently smaller pollen provisions provided to the first brood suggest that the first brood females are channelled into a helper role during their pre-imaginal development. As a large body size is needed for successful hibernation, the mother may promote helping in her first brood offspring by restricting their food provisions. This pattern supports the hypothesis that parental manipulation may contribute to promote worker behaviour in primitively eusocial halictids.
Resumo:
In recent years much progress has been made towards understanding the selective forces involved in the evolution of social behaviour including conflicts over reproduction among group members. Here, I argue that an important additional step necessary for advancing our understanding of the resolution of potential conflicts within insect societies is to consider the genetics of the behaviours involved. First, I discuss how epigenetic modifications of behaviour may affect conflict resolution within groups. Second, I review known natural polymorphisms of social organization to demonstrate that a lack of consideration of the genetic mechanisms involved may lead to erroneous explanations of the adaptive significance of behaviour. Third, I suggest that, on the basis of recent genetic studies of sexual conflict in Drosophila, it is necessary to reconsider the possibility of within-group manipulation by means of chemical substances (i.e. pheromones). Fourth, I address the issue of direct versus indirect genetic effects, which is of particular importance for the study of behaviour in social groups. Fifth, I discuss the issue of how a genetic influence on dominance hierarchies and reproductive division of labour can have secondary effects, for example in the evolution of promiscuity. Finally, because the same sets of genes (e.g. those implicated in chemical signalling and the responses that are triggered) may be used even in species as divergent as ants, cooperative breeding birds and primates, an integration of genetic mechanisms into the field of social evolution may also provide unifying ideas.
Resumo:
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
Resumo:
The oviposition behaviour of the braconid parasitoid, Compsobracon mirabilis ( Szépligeti, 1901) is described. Observations were conducted in a cerrado region located in Três Marias, Minas Gerais, Brazil. The oviposition occurred in a branch of Alibertia concolor (Cham.) K. Schum. 1889 (Rubiaceae), inside of which there were thirteen larvae of an unidentified species of Lepidoptera.
Resumo:
Morphological, chemical and developmental aspects of the Dufour gland in some eusocial bees (Hymenoptera, Apidae): a review. The present revision focused on the more recent data about the Dufour gland in some eusocial bees, taking in account general aspects of its morphology, secretion chemical nature, bio-synthetic pathway and development. Many functions have been attributed to this gland in eusocial bees, but none are convincing. With the new data about this gland, not only the secretion chemical pathway of the Dufour gland may be reasonable understood, as its function in some eusocial bees, especially Apis mellifera Linné, 1758, which has been extensively studied in the last years.
Resumo:
This study describes the reproductive system of Stachytarpheta maximiliani (Verbenaceae), including its floral biology, nectar and pollen availability and insect foraging patterns, identifying whose species act as pollinators. It was carried out in a Brazilian Atlantic rain forest site. Observations on the pollination biology of the Verbenaceae S. maximiliani indicate that their flowering period extends from September through May. Anthesis occurs from 5:30 a.m. to 5:00 p.m. and nectar and pollen are available during all the anthesis. Many species of beetles, hemipterans, flies, wasps, bees and butterflies visit their flowers, but bees and butterflies are the most frequent visitors. The flowers are generally small, gathered in dense showy inflorescences. A complex of floral characteristcs, such as violet-blue color of flowers, long floral tubes, without scents, nectar not exposed, high concentration of sugar in nectar (about 32%), allowed identification of floral syndromes (melittophily and psicophily) and function for each visitor. The bees, Bombus morio, B. atratus, Trigonopedia ferruginea, Xylocopa brasilianorum and Apis mellifera and the butterflies Corticea mendica mendica, Corticea sp., Vehilius clavicula, Urbanus simplicius, U. teleus and Heraclides thoas brasiliensis, are the most important pollinators.
Resumo:
Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.
Resumo:
This paper aims to study the distribution of natural nests of Xylocopa ordinaria and characterize its nesting habits in the restinga of Grussai/Iquipari (RJ), supporting future studies on the pollinators management in the northern Rio de Janeiro state. The data obtained from Aug/2003 to Dec/2004, in an area of 11.6ha, were related to the nest distribution, substrate identification and dimensions, emergence, sex ratio, nest structure (n= 23 nests) and pollen content analysis of provisioning masses and feces. X. ordinaria nests were abundant and presented a clustered distribution. These bees do not present taxonomical affinity for nesting substrates, but preferences for wood availability and characteristics, being Pera glabrata the main substrate. X. ordinaria is a multivoltine species that tolerates co-specifics in their nests. These bees were generalist on their nectar and pollen consumption, but presented floral constancy while provisioning brood cells. These behaviors, activity along the year, flights throughout the day, and legitimate visits to flowers indicate the importance of X. ordinaria on the pollination of plants in the restinga.
Resumo:
Isolates of the Trichophyton mentagrophytes complex vary phenotypically. Whether the closely related zoophilic and anthropophilic anamorphs currently associated with Arthroderma vanbreuseghemii have to be considered as members of the same biological species remains an open question. In order to better delineate species in the T. mentagrophytes complex, we performed a mating analysis of freshly collected isolates from humans and animals with A. benhamiae and A. vanbreuseghemii reference strains, in comparison to internal transcribed spacer (ITS) and 28S rDNA sequencing. Mating experiments as well as ITS and 28S sequencing unambiguously allowed the distinction of A. benhamiae and A. vanbreuseghemii. We have also shown that all the isolates from tinea pedis and tinea unguium identified as T. interdigitale based on ITS sequences mated with A. vanbreuseghemii tester strains, but had lost their ability to give fertile cleistothecia. Therefore, T. interdigitale has to be considered as a humanized species derived from the sexual relative A. vanbreuseghemii.
Resumo:
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.