929 resultados para Bayes theorem
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
A systematic time-dependent perturbation scheme for classical canonical systems is developed based on a Wick's theorem for thermal averages of time-ordered products. The occurrence of the derivatives with respect to the canonical variables noted by Martin, Siggia, and Rose implies that two types of Green's functions have to be considered, the propagator and the response function. The diagrams resulting from Wick's theorem are "double graphs" analogous to those introduced by Dyson and also by Kawasaki, in which the response-function lines form a "tree structure" completed by propagator lines. The implication of a fluctuation-dissipation theorem on the self-energies is analyzed and compared with recent results by Deker and Haake.
Resumo:
In this paper we present a new method to track bonemovements in stereoscopic X-ray image series of the kneejoint. The method is based on two different X-ray imagesets: a rotational series of acquisitions of the stillsubject knee that will allow the tomographicreconstruction of the three-dimensional volume (model),and a stereoscopic image series of orthogonal projectionsas the subject performs movements. Tracking the movementsof bones throughout the stereoscopic image series meansto determine, for each frame, the best pose of everymoving element (bone) previously identified in the 3Dreconstructed model. The quality of a pose is reflectedin the similarity between its simulated projections andthe actual radiographs. We use direct Fourierreconstruction to approximate the three-dimensionalvolume of the knee joint. Then, to avoid the expensivecomputation of digitally rendered radiographs (DRR) forpose recovery, we reformulate the tracking problem in theFourier domain. Under the hypothesis of parallel X-raybeams, we use the central-slice-projection theorem toreplace the heavy 2D-to-3D registration of projections inthe signal domain by efficient slice-to-volumeregistration in the Fourier domain. Focusing onrotational movements, the translation-relevant phaseinformation can be discarded and we only consider scalarFourier amplitudes. The core of our motion trackingalgorithm can be implemented as a classical frame-wiseslice-to-volume registration task. Preliminary results onboth synthetic and real images confirm the validity ofour approach.
Resumo:
Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A corresponding symmetry is obtained for linear transport near nonequilibrium stationary states, and the class of transport laws is extended to include nonlocality in both space and time. The results are formally exact and independent of any specific model for the nonequilibrium state.
Resumo:
Laudisa (Found. Phys. 38:1110-1132, 2008) claims that experimental research on the class of non-local hidden-variable theories introduced by Leggett is misguided, because these theories are irrelevant for the foundations of quantum mechanics. I show that Laudisa's arguments fail to establish the pessimistic conclusion he draws from them. In particular, it is not the case that Leggett-inspired research is based on a mistaken understanding of Bell's theorem, nor that previous no-hidden-variable theorems already exclude Leggett's models. Finally, I argue that the framework of Bohmian mechanics brings out the importance of Leggett tests, rather than proving their irrelevance, as Laudisa supposes.
Resumo:
The invaded cluster (IC) dynamics introduced by Machta et al. [Phys. Rev. Lett. 75, 2792 (1995)] is extended to the fully frustrated Ising model on a square lattice. The properties of the dynamics that exhibits numerical evidence of self-organized criticality are studied. The fluctuations in the IC dynamics are shown to be intrinsic of the algorithm and the fluctuation-dissipation theorem is no longer valid. The relaxation time is found to be very short and does not present a critical size dependence.
Resumo:
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreover, static blackfolds are possible with the geometry of minimal surfaces. The absence of compact embedded minimal surfaces in Euclidean space is consistent with the uniqueness theorem of static black holes
Resumo:
In this paper we find the quantities that are adiabatic invariants of any desired order for a general slowly time-dependent Hamiltonian. In a preceding paper, we chose a quantity that was initially an adiabatic invariant to first order, and sought the conditions to be imposed upon the Hamiltonian so that the quantum mechanical adiabatic theorem would be valid to mth order. [We found that this occurs when the first (m - 1) time derivatives of the Hamiltonian at the initial and final time instants are equal to zero.] Here we look for a quantity that is an adiabatic invariant to mth order for any Hamiltonian that changes slowly in time, and that does not fulfill any special condition (its first time derivatives are not zero initially and finally).
Resumo:
The front form and the point form of dynamics are studied in the framework of predictive relativistic mechanics. The non-interaction theorem is proved when a Poincar-invariant Hamiltonian formulation with canonical position coordinates is required.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
We develop an abstract extrapolation theory for the real interpolation method that covers and improves the most recent versions of the celebrated theorems of Yano and Zygmund. As a consequence of our method, we give new endpoint estimates of the embedding Sobolev theorem for an arbitrary domain Omega
Resumo:
In this paper we study the set of periods of holomorphic maps on compact manifolds, using the periodic Lefschetz numbers introduced by Dold and Llibre, which can be computed from the homology class of the map. We show that these numbers contain information about the existence of periodic points of a given period; and, if we assume the map to be transversal, then they give us the exact number of such periodic orbits. We apply this result to the complex projective space of dimension n and to some special type of Hopf surfaces, partially characterizing their set of periods. In the first case we also show that any holomorphic map of CP(n) of degree greater than one has infinitely many distinct periodic orbits, hence generalizing a theorem of Fornaess and Sibony. We then characterize the set of periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof of Baker's theorem.
Resumo:
This paper provides an axiomatic framework to compare the D-core (the set of undominatedimputations) and the core of a cooperative game with transferable utility. Theorem1 states that the D-core is the only solution satisfying projection consistency, reasonableness (from above), (*)-antimonotonicity, and modularity. Theorem 2 characterizes the core replacing (*)-antimonotonicity by antimonotonicity. Moreover, these axioms alsocharacterize the core on the domain of convex games, totally balanced games, balancedgames, and superadditive games
Resumo:
We consider the asymptotic behaviour of the realized power variation of processes of the form ¿t0usdBHs, where BH is a fractional Brownian motion with Hurst parameter H E(0,1), and u is a process with finite q-variation, q<1/(1¿H). We establish the stable convergence of the corresponding fluctuations. These results provide new statistical tools to study and detect the long-memory effect and the Hurst parameter.