967 resultados para Bacterial Genomes
Resumo:
The prebiotic potential of a konjac glucomannan hydrolysate (GMH) was investigated in vitro using batch cultures inoculated with human faeces. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation (FISH), and short chain fatty acid (SCFA) production was monitored by gas chromatography. The populations of Bifidobacterium genus, Lactobacillus–Enterococcus group and the Atopobium group all significantly increased after GMH and inulin fermentation. The Bacteroides–Prevotella group had a lower end population after GMH fermentation while inulin gave an increase, although these differences were not significant. No significant differences in SCFA concentrations were observed between inulin and GMH. As with inulin, GMH produced selective stimulation of beneficial gut microbiota and a favourable SCFA profile. In order to confirm a beneficial effect of GMH further in vivo studies involving healthy human volunteers should be considered.
Resumo:
Thirty-eight bacterial strains isolated from hazelnut (Corylus avellana) cv. Tonda Gentile delle Langhe showing a twig dieback in Piedmont and Sardinia, Italy, were studied by a polyphasic approach. All strains were assessed by fatty acids analysis and repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using BOX and ERIC primer sets. Representative strains also were assessed by sequencing the 16S rDNA and hrpL genes, determining the presence of the syrB gene, testing their biochemical and nutritional characteristics, and determining their pathogenicity to hazelnut and other plants species or plant organs. Moreover, they were compared with reference strains of other phytopathogenic pseudomonads. The strains from hazelnut belong to Pseudomonas syringae (sensu latu), LOPAT group Ia. Both fatty acids and repetitive-sequence-based PCR clearly discriminate such strains from other Pseudomonas spp., including P. avellanae and other P. syringae pathovars as well as P. syringae pv. syringae strains from hazelnut. Also, the sequencing of 16S rDNA and hrpL genes differentiated them from P. avellanae and from P. syringae pv. syringae. They did not possess the syrB gene. Some nutritional tests also differentiated them from related P. syringae pathovars. Upon artificial inoculation, these strains incited severe twig diebacks only on hazelnut. Our results justify the creation of a new pathovar because the strains from hazelnut constitute a homogeneous group and a discrete phenon. The name of P. syringae pv. coryli is proposed and criteria for routine identification are presented.
Resumo:
Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.
Resumo:
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution.
Resumo:
Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.
Resumo:
Weaning is a stressful process for kittens, and is often associated with diarrhoea and the onset of infectious diseases. The gastrointestinal microbiota plays an essential role in host well-being, including improving homeostasis. Composition of the gastrointestinal microbiota of young cats is poorly understood, and the impact of diet on the kitten microbiota unknown. The aims of this study were to monitor the faecal microbiota of kittens and determine the effect(s) of diet on its composition. Bacterial succession was monitored in two groups of kittens (at 4 and 6 weeks, and 4 and 9 months of age) fed different foods. Age-related microbial changes revealed significantly different counts of total bacteria, lactic acid bacteria, Desulfovibrionales, Clostridium cluster IX and Bacteroidetes between 4-week- and 9-month-old kittens. Diet-associated differences in the faecal microbiota of the two feeding groups were evident. In general, fluorescence in situ hybridization analysis demonstrated bifidobacteria, Atopobium group, Clostridium cluster XIV and lactic acid bacteria were dominant in kittens. Denaturing gradient gel electrophoresis profiling showed highly complex and diverse faecal microbiotas for kittens, with age- and/or food-related changes seen in relation to species richness and similarity indices. Four-week-old kittens harboured more diverse and variable profiles than those of weaned kittens.
Resumo:
Currently, the Genomic Threading Database (GTD) contains structural assignments for the proteins encoded within the genomes of nine eukaryotes and 101 prokaryotes. Structural annotations are carried out using a modified version of GenTHREADER, a reliable fold recognition method. The Gen THREADER annotation jobs are distributed across multiple clusters of processors using grid technology and the predictions are deposited in a relational database accessible via a web interface at http://bioinf.cs.ucl.ac.uk/GTD. Using this system, up to 84% of proteins encoded within a genome can be confidently assigned to known folds with 72% of the residues aligned. On average in the GTD, 64% of proteins encoded within a genome are confidently assigned to known folds and 58% of the residues are aligned to structures.
Resumo:
Consumption of anthocyanins has been related with beneficial health effects. However, bioavailability studies have shown low concentration of anthocyanins in plasma and urine. In this study, we have investigated the bacterial-dependent metabolism of malvidin-3-glucoside, gallic acid and a mixture of anthocyanins using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal human large intestine conditions. Most anthocyanins have disappeared after 5 h incubation while gallic acid remained constant through the first 5 h and was almost completely degraded following 24 h of fermentation. Incubation of malvidin-3-glucoside with fecal bacteria mainly resulted in the formation of syringic acid, while the mixture of anthocyanins resulted in formation of gallic, syringic and p-coumaric acids. All the anthocyanins tested enhanced significantly the growth of Bif idobacterium spp. and Lactobacillus−Enterococcus spp. These results suggest that anthocyanins and their metabolites may exert a positive modulation of the intestinal bacterial population.
Resumo:
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1168 For further resources related to this article, please visit the WIREs website.
Resumo:
Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.
Resumo:
The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.
Resumo:
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.