955 resultados para BIS(IMINO)PYRIDYL IRON(II)
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.
Resumo:
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.
Resumo:
The N,N-bidentate ligand 2-{(N-2,6-diisopropylphenyl)iminomethyl)}pyrrole (L-1) and the N,N,P-tridentate ligand 2-{(N-2-diphenylphosphinophenyl)iminomethyl)}pyrrole (L-2) have been prepared. Their reactions with homoleptic yttrium tris(alkyl) compound Y(CH2SiMe3)(3)(THF)(2) have been investigated. Treatment of Y(CH2SiMe3)(3)(THF)(2) with 1 equiv of L-1 generated a THF-solvated bimetallic (pyrrolylaldiminato)yttrium mono(alkyl) complex (1) of central symmetry. In this process, L-1 is deprotonated by metal alkyl and its imino CN group is reduced to C-N by intramolecular alkylation, generating dianionic species that bridge two yttrium alkyl units in a unique eta(5)/eta(1):kappa(1) mode. The pyrrolyl ring behaves as a heterocyclopentadienyl ligand. Reaction of Y(CH2SiMe3)(3)(THF)(2) with 2 equiv of L-1 afforded the monomeric bis(pyrrolylaldiminato)yttrium mono(alkyl) complex (2), selectively. Amination of 2 with 2,6-diisopropylaniline gave the corresponding yttrium amido complex (3). In 3 the pyrrolide ligand is monoanionic and bonds to the yttrium atom in a eta(1):kappa(1) mode. The homoleptic tris(eta(1):kappa(1)-pyrrolylaldiminato)yttrium complex (4) was isolated when the molar ratio of L-1 to Y(CH2SiMe3)(3)(THF)(2) increases to 3:1. Reaction of L-2 with equimolar Y(CH2SiMe3)(3)(THF)(2) afforded an asymmetric binuclear complex (5).
Resumo:
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.
Resumo:
Methoxy-modified beta-diimines HL1 and HL2 reacted with Y(CH2SiMe3)(3)(THF)(2) to afford the corresponding bis(alkyl)s [(LY)-Y-1(CH2SiMe3)(2)] (1) and [(LY)-Y-2(CH2SiMe3)(2)] (2), respectively. Amination of 1 with 2,6-diisopropyl aniline gave the bis(amido) counterpart [(LY)-Y-1{N(H)(2,6-iPr(2)-C6H3)}(2)] (3), selectively. Treatment of Y(CH2SiMe3)(3)(THF)(2) with methoxy-modified anilido imine HL3 yielded bis(alkyl) complex [(LY)-Y-3(CH2SiMe3)(2)(THF)] (4) that sequentially reacted with 2,6-diisopropyl aniline to give the bis(amido) analogue [(LY)-Y-3{N(H)(2,6-iPr(2)-C6H3)}(2)] (5). Complex 2 was "base-free" monomer, in which the tetradentate beta-diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans-arrangement of the amido ligands. In contrast, the two cis-located alkyl species in complex 4 were endo and exo towards the 0,N,N tridentate anilido-imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring-opening polymerization Of L-LA at room temperature.
Resumo:
The reactions of freshly prepared Cu(OH)(2).xH(2)O and Cu(OH)(2-2y)(CO3)(y).zH(2)O precipitates with imidazole and adipic acid in CH3OH/H2O at pH = 5.4 yielded CU(C3N2H4)(2)(HL)(2) 1 and CU(C3N2H4)(2)L 2, respectively. Complex 1 consists of ribbon-like polymeric chains (1)(infinity)[CU(C3N2H4)(2)(HL)(4/2)], in which the octahedrally coordinated Cu atoms are doubly bridged by bis-monodentate hydrogen adipato ligands. The interchain N-H...O hydrogen bonding interactions are responsible for supramolecular assembly of the polymeric chains into open 3D frameworks and two-fold interpenetration of the resulting open frameworks completes the crystal structure of 1. Within complex 2, the Cu atoms are penta-coordinated to form CuN2O3 square pyramids and condensed into CU2N4O4 dimers, which are doubly bridged by twisted bis-monodentate adipato ligands into polymeric chains (1)(infinity)([CU(C3N2H4)(2)](2)L-4/2) with 4- and 18-membered rings progressing alternatively. The polymeric chains are assembled due to interchain N-H...O hydrogen bonding interactions. The thermal and magnetic behaviors of 1 and 2 is discussed.
Resumo:
The extraction of zinc(II) and cadmium(II) from a chloride medium by mixtures of primary amine N1923 and organophosphorus acids [di-(2-ethylhexyl)-phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP), isopropyl phosphonic acid 1-hexyl-4-ethyloctyl ester, bis(2,4,4-trimethylpentyl) phosphinic acid, bis(2,4,4-trimethylpentyl) monothiophosphinic acid, and bis(2,4,4-trimethylpentyl) dithiophosphinic acid] has been studied in the present paper. Results show that only the mixtures of N1923 + HEH/EHP and N1923 + Cyanex272 have synergistic effects on zinc(II), but the other mixtures have no evident synergistic effects. All six mixtures have no evident synergistic effects on cadmium(H). A possible explanation of the different extraction abilities is given based on the structure of the extractants. Furthermore, the possibilities of separating zinc(II) and cadmium(II) with these mixtures are investigated according to the extractabilities. It is possible to separate Zn2+ from bulk cadmium with N1923 and HEH/EHP mixtures and separate Cd2+ from bulk zinc with N1923 and Cyanex301 mixtures.
Resumo:
alpha-Diimine nickel catalyst hearing two allyl groups [ArN=C](2)C10H6NiBr2 (Ar = 4-allyl-2,6-(i-Pr)(2)C6H2)] (Cat-I) has been synthesized and characterized. The corresponding polymer-incorporated nickel catalysts PC and the SiO2-supported shell-core structure catalyst SC-1 were obtained by the co-polymerization of the olefin groups of Cat-1 with styrene in the presence of a radical initiator. Radical co-polymerizations with styrene in Solution were investigated in detail, and the compositions and molecular weight of the copolymers were determined. All three types of catalysts (Cat-1, PC and SC-1) have been investigated for ethylene polymerization. These catalysts were found to exhibit high activity in the presence of modified methylaluminoxane (MMAO) as a co-catalyst. Among them, the polymer-incorporated PC and SiO2 shell-core catalyst SC-1 displayed very high activity (similar to2.62 and similar to1.11 kg (mmol Ni)(-1) h(-1), respectively) with product molecular weights (M,) in the range 26 x 10(4) to 47 x 10(4) under 0.1 MPa ethylene pressure. The particle morphology of polyethylene produced by the shell-core structure catalyst SC-1 was improved.
Resumo:
Two new Cull coordination polymers, namely [Cu-2(BDC)(2)(L)(4)(H2O)(2)]center dot 14H(2)O (1) and [Cu-1.5(BTC)(L)(1.5)(H2O)(0.5)]center dot 2H(2)O (2), where L = 1,1'-(1,4-butanediyl)bis(imidazole), BDC = 1,4-benzene dicarboxylate, and BTC = 1,3,5-benzenetricarboxylate, have been synthesized at room temperature. Complex 1 exhibits an unusual, square-planar, four-connected 2D (2)(6)4 net, which has been predicated by Wells. Interestingly, three types of water clusters, namely (H2O)(6), (H2O)(8), and (H2O)(10), are observed in the hydrogen-bonded layers constructed by the BDC ligands and water molecules. The BTC anion in compound 2 is coordinated to the Cu" cation as tetradentate ligand to form a (6(6))(2)(4(2)6(4)8(4))(2)(6(4)810) net containing three kinds of nonequivalent points, Thermogravimetric analyses (TGA) and IR spectra for 1 and 2 are also discussed in detail.
Resumo:
The yttrium(III) extraction kinetics and mechanism with bis-(2,4,4-trimethyl-pentyl) phosphinic acid (Cyanex 272, HA) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The data has been analyzed in terms of pseudo-first order constants. Studies on the effects of stirring rate, temperature, acidity in aqueous phase, and extractant concentration on the extraction rate show that the extraction regime is dependent on the extraction conditions. The plot of interfacial area on the rate has shown a linear relationship. This fact together with the strong surface activity of Cyanex 272 at heptane-water interfaces has made the interface the most probable location for the chemical reactions. The forward, reverse rate equations and extraction rate constant for the yttrium extraction with Cyanex 272 have been obtained under the experimental conditions. The rate-determining step has been also predicted from interfacial reaction models. The predictions have been found to be in good agreement with the rate equations obtained from experimental data, confirming the basic assumption that the chemical reaction is located at the liquid-liquid interface.
Resumo:
The ytterbium(III) extraction kinetics and mechanism with mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272) and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (P507) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The effects of the stirring rate, temperature, extractant concentration, and pH on the extraction with mixtures of Cyanex272 and P507 have been studied. The results are compared with those of the system with Cyanex272 or P507 alone. It is concluded that the Yb(III) extraction rate is enhanced with mixtures extractant of Cyanex272 and P507 according to their values of the extraction rate constant, which is due to decreasing the activation energy of the mixtures. At the same time, the mixtures exhibits no synergistic effects for Y(III), which provides better possibilities for Yb(III) and Y(III) separations at a proper conditions than anyone alone. Moreover, thermodynamic extraction separation Yb(III) and Y(III) by the mixtures has been discussed, which agrees with kinetics results. Extraction rate equations have also been obtained, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
A multiphase model of metal ion speciation in human interstitial fluid was constructed and the effect of Pr(III) on Ca(II) speciation was studied. Results show that free Ca2+, [Ca(HCO3)], and [Ca(Lac)] are the main species of Ca(II). Because of the competition of Pr(III) for ligands with Ca(II), the percentages of free Ca2+, [Ca(Lac)], and [Ca(His)(Thr)H-3] increase gradually and the percentages of CaHPO4(aq) and [Ca(Cit)(His)H-2] decrease gradually with the increase in the total concentration of Pr(III). However, the percentages of [Ca(HCO3)] and CaCO3(aq) first increase and then begin to decrease when the total concentration of Pr(III) exceeds 6.070 x 10(-4) M.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.