942 resultados para Azo dye
Resumo:
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Two techniques, namely UV-vis- and FTIR spectroscopy, have been employed in order to calculate the degree of substitution (DS) of cellulose carboxylic esters, including acetates, CAs, butyrates, CBs, and hexanoates, CHs. Regarding UV-vis spectroscopy, we have employed a novel approach, based on measuring the dependence of lambda(max) of the intra-molecular charge-transfer bands of polarity probes adsorbed on DS of the ester films (solvatochromism). Additionally, we have revisited the use of FTIR for DS determination. Several methods have been used in order to plot Beer`s law graph, namely: Absorption of KBr pellets, pre-coated with CA: reflectance (DRIFTS) of CAs-KBr solid-solid mixtures with, or without the use of 1.4-dicyanobenzene as an internal reference; reflectance of KBr powder pre-coated with CA. The methods indicated are simple, fast, and accurate, requiring much less ester than the titration method. The probe method is independent of the experimental variables examined. (c) 2010 Published by Elsevier Ltd.
Resumo:
Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
This work investigates the solar heterogeneous photocatalytic degradation of three commercial acid dyes: Blue 9 (C.I. 42090), Red 51 (C.I. 45430), and Yellow 23 (C.I. 19140). TiO(2) P25 from Degussa was used as the photocatalyst. The dyes were completely degraded within 120 min of treatment in the following increasing order of removal rate: Blue 9 < Yellow 23 < Red 51. The photocatalytic color removal process was well described by a two-first-order in-series reaction, followed by another first-order reaction. Photolytic experiments showed that this process is quite inefficient and highly selective towards Red 51 only. The dyes` solution was completely decolorized and organic matter removals up to 99% were achieved with photocatalysis. The lack of selectivity and the possibility of using solar light to excite the photocatalyst are promising results regarding the feasibility of this technology.
Resumo:
This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous studies that have used retrograde axonal tracers (horseradish peroxidase alone or conjugated with wheat germ agglutinin) have shown that the temporomandibular joint (TMJ) is supplied with nerve fibers originating mainly from the trigeminal ganglion, in addition to other sensory and sympathetic ganglia. The existence of nerve fibers in the TMJ originating from the trigeminal mesencephalic nucleus is unclear, and the possible innervation by parasympathetic nerve fibers has not been determined. In the present work, the retrograde axonal tracer, fast blue, was used to elucidate these questions and re-evaluated the literature data. The tracer was deposited in the supradiscal articular space of the rat TMJ, and an extensive morphometric analysis was performed of the labeled perikaryal profiles located in sensory and autonomic ganglia. This methodology permitted us to observe labeled small perikaryal profiles in the trigeminal ganglion, clustered mainly in the posterior-lateral region of the dorsal, medial and ventral thirds of horizontal sections, with some located in the anterior-lateral region of the ventral third. Sensory perikarya were also labeled in the dorsal root ganglia from C2 to C5. No labeled perikaryal profiles were found in the trigeminal mesencephalic nucleus. on the other hand, autonomic labeled perikaryal profiles were distributed in the sympathetic superior cervical and stellate ganglia, and parasympathetic otic ganglion. Our results confirmed those of previous studies and also demonstrated that: (i) there is a distribution pattern of labeled perikaryal profiles in the trigeminal ganglion; (ii) some perikaryal profiles located in the otic ganglion were labeled; and (iii) the trigeminal mesencephalic nucleus did not show any retrogradely labeled perikaryal profiles.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.