941 resultados para Automatic classification
Resumo:
Ergonomic design of products demands accurate human dimensions-anthropometric data. Manual measurement over live subjects, has several limitations like long time, required presence of subjects for every new measurement, physical contact etc. Hence the data currently available is limited and anthropometric data related to facial features is difficult to obtain. In this paper, we discuss a methodology to automatically detect facial features and landmarks from scanned human head models. Segmentation of face into meaningful patches corresponding to facial features is achieved by Watershed algorithms and Mathematical Morphology tools. Many Important physiognomical landmarks are identified heuristically.
Resumo:
Proving the unsatisfiability of propositional Boolean formulas has applications in a wide range of fields. Minimal Unsatisfiable Sets (MUS) are signatures of the property of unsatisfiability in formulas and our understanding of these signatures can be very helpful in answering various algorithmic and structural questions relating to unsatisfiability. In this paper, we explore some combinatorial properties of MUS and use them to devise a classification scheme for MUS. We also derive bounds on the sizes of MUS in Horn, 2-SAT and 3-SAT formulas.
Resumo:
In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.
Resumo:
This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.
Resumo:
A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.
Resumo:
An energy-momentum conserving time integrator coupled with an automatic finite element algorithm is developed to study longitudinal wave propagation in hyperelastic layers. The Murnaghan strain energy function is used to model material nonlinearity and full geometric nonlinearity is considered. An automatic assembly algorithm using algorithmic differentiation is developed within a discrete Hamiltonian framework to directly formulate the finite element matrices without recourse to an explicit derivation of their algebraic form or the governing equations. The algorithm is illustrated with applications to longitudinal wave propagation in a thin hyperelastic layer modeled with a two-mode kinematic model. Solution obtained using a standard nonlinear finite element model with Newmark time stepping is provided for comparison. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
Comments constitute an important part of Web 2.0. In this paper, we consider comments on news articles. To simplify the task of relating the comment content to the article content the comments are about, we propose the idea of showing comments alongside article segments and explore automatic mapping of comments to article segments. This task is challenging because of the vocabulary mismatch between the articles and the comments. We present supervised and unsupervised techniques for aligning comments to segments the of article the comments are about. More specifically, we provide a novel formulation of supervised alignment problem using the framework of structured classification. Our experimental results show that structured classification model performs better than unsupervised matching and binary classification model.
Resumo:
In the design of practical web page classification systems one often encounters a situation in which the labeled training set is created by choosing some examples from each class; but, the class proportions in this set are not the same as those in the test distribution to which the classifier will be actually applied. The problem is made worse when the amount of training data is also small. In this paper we explore and adapt binary SVM methods that make use of unlabeled data from the test distribution, viz., Transductive SVMs (TSVMs) and expectation regularization/constraint (ER/EC) methods to deal with this situation. We empirically show that when the labeled training data is small, TSVM designed using the class ratio tuned by minimizing the loss on the labeled set yields the best performance; its performance is good even when the deviation between the class ratios of the labeled training set and the test set is quite large. When the labeled training data is sufficiently large, an unsupervised Gaussian mixture model can be used to get a very good estimate of the class ratio in the test set; also, when this estimate is used, both TSVM and EC/ER give their best possible performance, with TSVM coming out superior. The ideas in the paper can be easily extended to multi-class SVMs and MaxEnt models.
Resumo:
The present approach uses stopwords and the gaps that oc- cur between successive stopwords –formed by contentwords– as features for sentiment classification.
Resumo:
There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.
Resumo:
Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.