990 resultados para Atom and Molecular Physics and Optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2x2 Hilbert space. The quantum nonlocality persists longer in 2x2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some non-classical properties such as squeezing, sub-Poissonian photon statistics or oscillations in photon-number distributions may survive longer in a phase-sensitive environment than in a phase-insensitive environment. We examine if entanglement, which is an inter-mode non-classical feature, can also survive longer in a phase-sensitive environment. Differently from the single-mode case, we find that making the environment phase-sensitive does not aid in prolonging the inter-mode non-classical nature, i.e. entanglement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a continuous-variable entangled state composed of two states which are squeezed in two opposite quadratures in phase space. Various entanglement conditions are tested for the entangled squeezed state and we study decoherence models for noise, producing a mixed entangled squeezed state. We briefly describe a probabilistic protocol for entanglement swapping based on the use of this class of entangled states and the main features of a general generation scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two strategies to enhance the dynamical entanglement transfer from continuous-variable (CV) to finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between the microscopic and macroscopic behaviors of composite finite-dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entanglement into "almost-perfect" Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a dense spectrum of chaotic multiply excited eigenstates can play a major role in collision processes involving many-electron multicharged ions. A statistical theory based on chaotic properties of the eigenstates enables one to obtain relevant energy-averaged cross sections in terms of sums over single-electron orbitals. Our calculation of low-energy electron recombination of Au25+ shows that the resonant process is 200 times more intense than direct radiative recombination, which explains the recent experimental results of Hoffknecht [J. Phys. B 31, 2415 (1998)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first complete multi-state CDW close coupling calculations which use a fully normalized basis set are performed. The results obtained at impact energies in the region of 10 keV for total and n = 2 capture cross sections are in reasonably good accord with experiment despite the fact that only the ground states of both species and the n = 2 states of the projectile are incorporated into the model. The theory has significant advantages over other atomic and molecular expansions which may require extensive bases to obtain similar accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear- response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral- representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of the ionization of atomic hydrogen by electron impact from 0.3 eV to a few eV above the ionization threshold has been carried out using a semiclassical-quantal calculation. Differential and integrated cross sections are presented at 0.3 eV above the energy threshold. Triple- differential cross sections (TDCS) are presented at constant theta(12) geometry where theta(12)=180degrees and 150degrees. Good agreement is achieved with the measurement [Roder, Phys. Rev. Lett. 79, 1666 (1997)] and calculations based on exterior complex scaling at 2 eV and 4 eV above threshold. Results of triple-differential cross sections are also presented at 0.3, 0.5, and 1.0 eV above threshold at both theta(12)=180degrees and 150degrees. At theta(12)=180degrees the small local maximum in the TDCS around theta(1)=90degrees reported by Pan and Starace [Phys. Rev. A 45, 4588 (1992)] at 0.5 eV above threshold is not observed in our calculation at energies down to 0.3 eV above threshold. The shape of our double differential cross sections seems to disagree qualitatively with the available calculations as we found two local maxima around 15degrees and 165degrees in our calculation. Single differential cross sections in our formulation appear naturally as a function of total excess energy E and, therefore, constant for all combinations of individual electron energies E-1 and E- 2 with E=E-1+E-2. Total ionization cross sections are also compared with measurement and available theoretical calculations and found to be in reasonably good agreement up to 10 eV above ionization threshold.