927 resultados para Astrophysics - High Energy Astrophysical Phenomena
Resumo:
High-resolution side scan sonar has been used for mapping the seafloor of the Ría de Pontevedra. Four backscatter patterns have been mapped within the Ría: (1) Pattern with isolated reflections, correlated with granite and metamorphic outcrops and located close to the coastal prominence and Ons and Onza Islands. (2) Pattern of strong reflectivity usually located around the basement outcrops and near the coastline and produced by coarse-grained sediment. (3) Pattern of weak backscatter is correlated with fine sand to mud and comprising large areas in the central and deep part of the Ría, where the bottom currents are weak. It is generally featureless, except where pockmarks and anthropogenic features are present. (4) Patches of strong and weak backscatter are located in the boundary between coarse and fine-grained sediments and they are due to the effect of strong bottom currents. The presence of megaripples associated to both patterns of strong reflectivity and sedimentary patches indicate bedload transport of sediment during high energy conditions (storms). Side scan sonar records and supplementary bathymetry, bottom samples and hydrodynamic data reveal that the distribution of seafloor sediment is strongly related to oceanographic processes and the particular morphology and topography of the Ría.
Resumo:
J/psi photoproduction is studied in the framework of the analytic S-matrix theory. The differential and integrated elastic cross sections for J/psi photoproduction are calculated from a dual amplitude with Mandelstam analyticity. It is argued that, at low energies, the background, which is the low-energy equivalent of the high-energy diffraction, replaces the Pomeron exchange. The onset of the high-energy Pomeron dominance is estimated from the fits to the data.
Resumo:
The increasing availability and precision of digital elevation model (DEM) helps in the assessment of landslide prone areas where only few data are available. This approach is performed in 6 main steps which include: DEM creation; identification of geomorphologic features; determination of the main sets of discontinuities; mapping of the most likely dangerous structures; preliminary rock-fall assessment; estimation of the large instabilities volumes. The method is applied to two the cases studies in the Oppstadhornet mountain (730m alt): (1) a 10 millions m3 slow-moving rockslide and (2) a potential high-energy rock falling prone area. The orientations of the foliation and of the major discontinuities have been determined directly from the DEM. These results are in very good agreement with field measurements. Spatial arrangements of discontinuities and foliation with the topography revealed hazardous structures. Maps of potential occurrence of these hazardous structures show highly probable sliding areas at the foot of the main landslide and potential rock falls in the eastern part of the mountain.
Resumo:
We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.
Resumo:
After birth, the body shifts from glucose as primary energy substrate to milk-derived fats, with sugars from lactose taking a secondary place. At weaning, glucose recovers its primogeniture and dietary fat role decreases. In spite of human temporary adaptation to a high-fat (and sugars and protein) diet during lactation, the ability to thrive on this type of diet is lost irreversibly after weaning. We could not revert too the lactating period metabolic setting because of different proportions of brain/muscle metabolism in the total energy budget, lower thermogenesis needs and capabilities, and absence of significant growth in adults. A key reason for change was the limited availability of foods with high energy content at weaning and during the whole adult life of our ancestors, which physiological adaptations remain practically unchanged in our present-day bodies. Humans have evolved to survive with relatively poor diets interspersed by bouts of scarcity and abundance. Today diets in many societies are largely made up from choice foods, responding to our deeply ingrained desire for fats, protein, sugars, salt etc. Consequently our diets are not well adjusted to our physiological needs/adaptations but mainly to our tastes (another adaptation to periodic scarcity), and thus are rich in energy roughly comparable to milk. However, most adult humans cannot process the food ingested in excess because our cortical-derived craving overrides the mechanisms controlling appetite. This is produced not because we lack the biochemical mechanisms to use this energy, but because we are unprepared for excess, and wholly adapted to survive scarcity. The thrifty mechanisms compound the effects of excess nutrients and damage the control of energy metabolism, developing a pathologic state. As a consequence, an overflow of energy is generated and the disease of plenty develops.
Resumo:
This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat) intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome
Resumo:
90Y-labelled radiopharmaceuticals offer promising prospects for radionuclide therapies of tumours, e.g. radioimmunotherapies (RIT), (EANM, 2007), peptide receptor radiotherapies (PRRT), (Otte et al., 1998), and selective internal radiotherapies (SIRT), (Salem and Thurston, 2006). 90Y, an almost pure high-energy beta radiation emitter (Eβ,max = 2.28 MeV), is a favourable radionuclide for therapeutic purposes. However, when preparing and performing these therapies, high activities of 90Y (>1 GBq) are to be manipulated and technicians, physicians and nurses may receive high skin exposures to the hands. If radiation protection standards are low, the exposure of staff can exceed the annual skin dose limit of 500 mSv. Within a particular work package (WP4) of the ORAMED project, comprehensive measurements in nuclear medicine departments of several hospitals in 6 European countries were carried out. The study focussed on 90Y-labelled substances such as Zevalin® and DOTATOC to achieve a representative database on staff exposure. This paper summarises the most important results and conclusions for individual monitoring of skin exposure of staff.
Resumo:
BACKGROUND: A combination of radioimmunotherapy (RIT) and radiotherapy (RT) should allow one to increase the dose of radiation targeting a particular tumour without the concomitant increase of toxic side effects. This might be obtained if the dose limiting side effect of each individual radiation therapy concerned different organs. METHODS: Six patients with limited liver metastatic disease from colorectal cancer were treated with 6.9 GBq (range 4.7 to 8.4 GBq) 131I-labelled anti-CEA MAb F(ab')2 fragments combined with 20 Gy RT to the liver. Both treatments were given in close association, according to timing schedules evaluated in animals that gave the best results. RESULTS: Reversible bone marrow and liver toxicity was observed in 6 and 5 patients, respectively. Three patients who first received 20 Gy RT to the liver, showed a significant platelet drop upon completion of RT. Repeat computerized tomography (CT) after 2 months showed a minor response in 1 patient and stable disease in 3 patients. CONCLUSION: The study shows potential ways of combining RIT and RT, suggesting that this combination is feasible for the treatment of liver metastases.
Resumo:
Due to the development of new 'bedside' investigative methods, relatively abstract physiologic concepts such as energy cost of growth, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified in very low birthweight infants. 'Healthy' premature infants expend about 30% of their energy to cover the metabolic cost of growth. Stable isotope techniques using 15N-(or 13C)-labeled amino acids gave a new insight into this very high energy demanding process represented by the protein accretion in growing tissues. It has been demonstrated that the rate of protein synthesis (10-12 g/kg/day) greatly exceeds that necessary for net protein gain (2 g/kg/day). The postnatal growth and protein metabolism have different characteristics in 'healthy', 'sick' or 'intrauterine undernourished' very low birthweight infants.
Resumo:
This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.
Resumo:
To remove these pollutants from groundwater, different technologies can be used. Currently, the Environmental Protection Agency (EPA) considers ion exchange, reverse osmosis and reverse electrodialysis to be effective methods for the decrease of their concentrations, below their limit in drinking water. These technologies have some drawbacks, such as low selectivity towards the target pollutant, high energy or chemicals requirements, and the generation of waste brine (pollutants are separated from water, not treated), which require an additional treatment. Bio Electro Chemical Systems (BES) could fill this niche
Resumo:
The formation and development of transverse and crescentic sand bars in the coastal marine environment has been investigated by means of a nonlinear numerical model based on the shallow-water equations and on a simpli ed sediment transport parameterization. By assuming normally approaching waves and a saturated surf zone, rhythmic patterns develop from a planar slope where random perturbations of small amplitude have been superimposed. Two types of bedforms appear: one is a crescentic bar pattern centred around the breakpoint and the other, herein modelled for the rst time, is a transverse bar pattern. The feedback mechanism related to the formation and development of the patterns can be explained by coupling the water and sediment conservation equations. Basically, the waves stir up the sediment and keep it in suspension with a certain cross-shore distribution of depth-averaged concentration. Then, a current flowing with (against) the gradient of sediment concentration produces erosion (deposition). It is shown that inside the surf zone, these currents may occur due to the wave refraction and to the redistribution of wave breaking produced by the growing bedforms. Numerical simulations have been performed in order to understand the sensitivity of the pattern formation to the parameterization and to relate the hydro-morphodynamic input conditions to which of the patterns develops. It is suggested that crescentic bar growth would be favoured by high-energy conditions and ne sediment while transverse bars would grow for milder waves and coarser sediment. In intermediate conditions mixed patterns may occur.
Resumo:
We used high-resolution swath-bathymetry data to characterise the morphology of the abandoned subaqueous Sol de Riu delta lobe in the Ebro Delta, Western Mediterranean Sea. This study aims to assess the influence of an abandoned delta lobe on present-day coastal dynamics in a micro-tidal environment. Detailed mapping of the relict Sol de Riu lobe also showed a set of bedforms interpreted as footprints of human activities: seasonal V-shaped depressions on the middle shoreface due to boat anchoring and old trawling marks between 16 and 18 m water depth. Estimations of the mobility of bottom sediment showed that the shallowest shoreface (i.e. less than 7 m depth) is the most dynamic part of the relict lobe, while the middle shoreface experienced significant morphological changes since the lobe was abandoned. The deepest shoreface (i.e. water depth in excess of 15 m), which corresponds to the front of the lobe, is defined by a very small potential for morphological change. Simulations showed that while the relict lobe does not significantly affect the typical short period waves (Tp ≈4 s) in the study area, it does interfere with the most energetic wave conditions (Tp ≥ 7 s) acting as a shoal leading to the concentration of wave energy along the shoreline northwest of the lobe. The consequence of such modification of the high-energy wave propagation pattern by the relict lobe is an alteration of the wave-induced littoral sediment dynamics with respect to a situation without the lobe.
Resumo:
The thermogenic response to a 100-g oral glucose challenge was studied in 12 patients with Graves' disease using continuous indirect calorimetry. Seven hyperthyroid patients were reinvestigated under the same experimental conditions after medical therapy. The mean net increase in energy expenditure (delta EE) following the glucose challenge was the same in hyperthyroid patients as compared to a control group (delta EE = +0.15 +/- 0.02 and 0.15 +/- 0.01 kcal/min, respectively) and the treated patients (delta EE = +0.11 +/- 0.03 kcal/min ns). When expressed as a percentage of the energy content of the glucose challenge, the mean glucose induced thermogenesis was similar in all three groups: 7.0 +/- 1.0%, 7.4 +/- 0.5%, and 5.5 +/- 1.3% in hyperthyroid, control subjects, and treated patients, respectively. It is concluded that the high energy requirement of hyperthyroid patients is due primarily to an elevated resting energy expenditure. The postprandial thermogenesis in itself does not contribute to the elevated fuel utilization in Graves' disease.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.