975 resultados para Array CGH, Amplifications, Deletions, Medulloblastoma, Neuroblastoma
Resumo:
Nineteen benign [World Health Organization (WHO) grade I; MI], 21 atypical (WHO grade II; MII), and 19 anaplastic (WHO grade III; MIII) sporadic meningiomas were screened for chromosomal imbalances by comparative genomic hybridization (CGH). These data were supplemented by molecular genetic analyses of selected chromosomal regions and genes. With increasing malignancy grade, a marked accumulation of genomic aberrations was observed; i.e., the numbers (mean ± SEM) of total alterations detected per tumor were 2.9 ± 0.7 for MI, 9.2 ± 1.2 for MII, and 13.3 ± 1.9 for MIII. The most frequent alteration detected in MI was loss on 22q (58%). In MII, aberrations most commonly identified were losses on 1p (76%), 22q (71%), 14q (43%), 18q (43%), 10 (38%), and 6q (33%), as well as gains on 20q (48%), 12q (43%), 15q (43%), 1q (33%), 9q (33%), and 17q (33%). In MIII, most of these alterations were found at similar frequencies. However, an increase in losses on 6q (53%), 10 (68%), and 14q (63%) was observed. In addition, 32% of MIII demonstrated loss on 9p. Homozygous deletions in the CDKN2A gene at 9p21 were found in 4 of 16 MIII (25%). Highly amplified DNA sequences were mapped to 12q13–q15 by CGH in 1 MII. Southern blot analysis of this tumor revealed amplification of CDK4 and MDM2. By CGH, DNA sequences from 17q were found to be amplified in 1 MII and 8 MIII, involving 17q23 in all cases. Despite the high frequency of chromosomal aberrations in the MII and MIII investigated, none of these tumors showed mutations in exons 5–8 of the TP53 gene. On the basis of the most common aberrations identified in the various malignancy grades, a model for the genomic alterations associated with meningioma progression is proposed.
Resumo:
Cytoplasmic sequestration of wild-type p53 protein occurs in a subset of primary human tumors including breast cancer, colon cancer, and neuroblastoma (NB). The sequestered p53 localizes to punctate cytoplasmic structures that represent large protein aggregates. One functional consequence of this blocked nuclear access is impairment of the p53-mediated G1 checkpoint after DNA damage. Here we show that cytoplasmic p53 from NB cells is incompetent for specific DNA binding, probably due to its sequestration. Importantly, the C-terminal domain of sequestered p53 is masked, as indicated by the failure of a C-terminally directed antibody to detect p53 in these structures. To determine (i) which domain of p53 is involved in the aggregation and (ii) whether this phenotype is potentially reversible, we generated stable NB sublines that coexpress the soluble C-terminal mouse p53 peptide DD1 (amino acids 302–390). A dramatic phenotypic reversion occurred in five of five lines. The presence of DD1 blocked the sequestration of wild-type p53 and relocated it to the nucleus, where it accumulated. The nuclear translocation is due to shuttling of wild-type p53 by heteroligomerization to DD1, as shown by coimmunoprecipitation. As expected, the nuclear heterocomplexes were functionally inactive, since DD1 is a dominant negative inhibitor of wild-type p53. In summary, we show that nuclear access of p53 can be restored in NB cells.
Resumo:
Nested chromosomal deletions are powerful genetic tools. They are particularly suited for identifying essential genes in development either directly or by screening induced mutations against a deletion. To apply this approach to the functional analysis of mouse chromosome 2, a strategy for the rapid generation of nested deletions with Cre recombinase was developed and tested. A loxP site was targeted to the Notch1 gene on chromosome 2. A targeted line was cotransfected with a second loxP site and a plasmid for transient expression of Cre. Independent random integrations of the second loxP site onto the targeted chromosome in direct repeat orientation created multiple nested deletions. By virtue of targeting in an F1 hybrid embryonic stem cell line, F1(129S1×Cast/Ei), the deletions could be verified and rapidly mapped. Ten deletions fell into seven size classes, with the largest extending six or seven centiMorgans. The cytology of the deletion chromosomes were determined by fluorescent in situ hybridization. Eight deletions were cytologically normal, but the two largest deletions had additional rearrangements. Three deletions, including the largest unrearranged deletion, have been transmitted through the germ line. Several endpoints also have been cloned by plasmid rescue. These experiments illustrate the means to rapidly create and map deletions anywhere in the mouse genome. They also demonstrate an improved method for generating nested deletions in embryonic stem cells.
Resumo:
Neuroblastoma (NB) is a common pediatric tumor that exhibits a wide range of biological and clinical heterogeneity. EPH (erythropoietin-producing hepatoma amplified sequence) family receptor tyrosine kinases and ligand ephrins play pivotal roles in neural and cardiovascular development. High-level expression of transcripts encoding EPHB6 receptors (EPHB6) and its ligands ephrin-B2 and ephrin-B3 (EFNB2, EFNB3) is associated with low-stage NB (stages 1, 2, and 4S) and high TrkA expression. In this study, we showed that EFNB2 and TrkA expressions were associated with both tumor stage and age, whereas EPHB6 and EFNB3 expressions were solely associated with tumor stage, suggesting that these genes were expressed in distinct subsets of NB. Kaplan-Meier and Cox regression analyses revealed that high-level expression of EPHB6, EFNB2, and EFNB3 predicted favorable NB outcome (P < 0.005), and their expression combined with TrkA expression predicted the disease outcome more accurately than each variable alone (P < 0.00005). Interestingly, if any one of the four genes (EPHB6, EFNB2, EFNB3, or TrkA) was expressed at high levels in NB, the patient survival was excellent (>90%). To address whether a good disease outcome of NB was a consequence of high-level expression of a “favorable NB gene,” we examined the effect of EPHB6 on NB cell lines. Transfection of EPHB6 cDNA into IMR5 and SY5Y expressing little endogenous EPHB6 resulted in inhibition of their clonogenicity in culture. Furthermore, transfection of EPHB6 suppressed the tumorigenicity of SY5Y in a mouse xenograft model, demonstrating that high-level expressions of favorable NB genes, such as EPHB6, can in fact suppress malignant phenotype of unfavorable NB.
Resumo:
Plant disease resistance (R) genes confer race-specific resistance to pathogens and are genetically defined on the basis of intra-specific functional polymorphism. Little is known about the evolutionary mechanisms that generate this polymorphism. Most R loci examined to date contain alternate alleles and/or linked homologs even in disease-susceptible plant genotypes. In contrast, the resistance to Pseudomonas syringae pathovar maculicola (RPM1) bacterial resistance gene is completely absent (rpm1-null) in 5/5 Arabidopsis thaliana accessions that lack RPM1 function. The rpm1-null locus contains a 98-bp segment of unknown origin in place of the RPM1 gene. We undertook comparative mapping of RPM1 and flanking genes in Brassica napus to determine the ancestral state of the RPM1 locus. We cloned two B. napus RPM1 homologs encoding hypothetical proteins with ≈81% amino acid identity to Arabidopsis RPM1. Collinearity of genes flanking RPM1 is conserved between B. napus and Arabidopsis. Surprisingly, we found four additional B. napus loci in which the flanking marker synteny is maintained but RPM1 is absent. These B. napus rpm1-null loci have no detectable nucleotide similarity to the Arabidopsis rpm1-null allele. We conclude that RPM1 evolved before the divergence of the Brassicaceae and has been deleted independently in the Brassica and Arabidopsis lineages. These results suggest that functional polymorphism at R gene loci can arise from gene deletions.
Resumo:
Early detection is an effective means of reducing cancer mortality. Here, we describe a highly sensitive high-throughput screen that can identify panels of markers for the early detection of solid tumor cells disseminated in peripheral blood. The method is a two-step combination of differential display and high-sensitivity cDNA arrays. In a primary screen, differential display identified 170 candidate marker genes differentially expressed between breast tumor cells and normal breast epithelial cells. In a secondary screen, high-sensitivity arrays assessed expression levels of these genes in 48 blood samples, 22 from healthy volunteers and 26 from breast cancer patients. Cluster analysis identified a group of 12 genes that were elevated in the blood of cancer patients. Permutation analysis of individual genes defined five core genes (P ≤ 0.05, permax test). As a group, the 12 genes generally distinguished accurately between healthy volunteers and patients with breast cancer. Mean expression levels of the 12 genes were elevated in 77% (10 of 13) untreated invasive cancer patients, whereas cluster analysis correctly classified volunteers and patients (P = 0.0022, Fisher's exact test). Quantitative real-time PCR confirmed array results and indicated that the sensitivity of the assay (1:2 × 108 transcripts) was sufficient to detect disseminated solid tumor cells in blood. Expression-based blood assays developed with the screening approach described here have the potential to detect and classify solid tumor cells originating from virtually any primary site in the body.
Resumo:
Programmed cell death (PCD) during neuronal development and disease has been shown to require de novo RNA synthesis. However, the time course and regulation of target genes is poorly understood. By using a brain-biased array of over 7,500 cDNAs, we profiled this gene expression component of PCD in cerebellar granule neurons challenged separately by potassium withdrawal, combined potassium and serum withdrawal, and kainic acid administration. We found that hundreds of genes were significantly regulated in discreet waves including known genes whose protein products are involved in PCD. A restricted set of genes was regulated by all models, providing evidence that signals inducing PCD can regulate large assemblages of genes (of which a restricted subset may be shared in multiple pathways).
Resumo:
Symbiotic associations with microorganisms are pivotal in many insects. Yet, the functional roles of obligate symbionts have been difficult to study because it has not been possible to cultivate these organisms in vitro. The medically important tsetse fly (Diptera: Glossinidae) relies on its obligate endosymbiont, Wigglesworthia glossinidia, a member of the Enterobacteriaceae, closely related to Escherichia coli, for fertility and possibly nutrition. We show here that the intracellular Wigglesworthia has a reduced genome size smaller than 770 kb. In an attempt to understand the composition of its genome, we used the gene arrays developed for E. coli. We were able to identify 650 orthologous genes in Wigglesworthia corresponding to ≈85% of its genome. The arrays were also applied for expression analysis using Wigglesworthia cDNA and 61 gene products were detected, presumably coding for some of its most abundant products. Overall, genes involved in cell processes, DNA replication, transcription, and translation were found largely retained in the small genome of Wigglesworthia. In addition, genes coding for transport proteins, chaperones, biosynthesis of cofactors, and some amino acids were found to comprise a significant portion, suggesting an important role for these proteins in its symbiotic life. Based on its expression profile, we predict that Wigglesworthia may be a facultative anaerobic organism that utilizes ammonia as its major source of nitrogen. We present an application of E. coli gene arrays to obtain broad genome information for a closely related organism in the absence of complete genome sequence data.
Resumo:
The mammalian form of the protozoan parasite Leishmania mexicana contains high activity of a cysteine proteinase (LmCPb) encoded on a tandem array of 19 genes (lmcpb). Homozygous null mutants for lmcpb have been produced by targeted gene disruption. All life-cycle stages of the mutant can be cultured in vitro, demonstrating that the gene is not essential for growth or differentiation of the parasite. However, the mutant exhibits a marked phenotype affecting virulence-- its infectivity to macrophages is reduced by 80%. The mutants are as efficient as wild-type parasites in invading macrophages but they only survive in a small proportion of the cells. However, those parasites that successfully infect these macrophages grow normally. Despite their reduced virulence, the mutants are still able to produce subcutaneous lesions in mice, albeit at a slower rate than wild-type parasites. The product of a single copy of lmcpb re-expressed in the null mutant was enzymatically active and restored infectivity toward macrophages to wild-type levels. Double null mutants created for lmcpb and lmcpa (another cathepsin L-like cysteine proteinase) have a similar phenotype to the lmcpb null mutant, showing that LmCPa does not compensate for the loss of LmCPb.
Resumo:
Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression.
Resumo:
Olfactory neuroblastoma (ONB) is a malignant tumor of the nasal mucosa whose histogenesis is unclear. A relationship to neuroblastoma (NB), a pediatric tumor of the sympathetic nervous system, is based on morphologic similarities and the expression of similar neural antigens. However, the clinical presentation of ONB differs from that of NB, and MYCN amplification characteristic of NB is not observed. We have therefore examined the relationship of this malignancy to other classes of neural tumors. In previous studies, two ONB cell lines demonstrated cytogenetic features and patterns of protooncogene expression suggestive of a relationship to the Ewing sarcoma family of childhood peripheral primitive neuroectodermal tumors (pPNETs). The pPNETs show t(11;22)(q24;q12) or t(21;22)(q22;q12) chromosomal translocations fusing the EWS gene from 22q12 with either the FL11 gene on 11q24 or the ERG gene on 21q22. We therefore analyzed ONBs for the presence of pPNET-associated gene fusions. Both cell lines showed rearrangement of the EWS gene, and fluorescence in situ hybridization (FISH) of each case demonstrated fusion of EWS and FL11 genomic sequences. Moreover, both lines expressed EWS/FL11 fusion transcripts with in-frame junctions between exon 7 of EWS and exon 6 of FL11 as described for pPNETs. We identified similar gene fusions in four of six primary ONB cases. None of the cases expressed tyrosine hydroxylase, a catecholamine biosynthetic enzyme widely expressed in NB. Our studies indicate that ONB is not a NB but is a member of the pPNET family.
Resumo:
Deletion of the clathrin heavy-chain gene, CHC1, in the budding yeast Saccharomyces cerevisiae results in growth, morphological, and membrane trafficking defects, and in some strains chc1-delta is lethal. A previous study identified five genes which, in multicopy, rescue inviable strains of Chc- yeast. Now we report that one of the suppressor loci, BMH2/SCD3, encodes a protein of the 14-3-3 family. The 14-3-3 proteins are abundant acidic proteins of approximately 30 kDa with numerous isoforms and a diverse array of reported functions. The Bmh2 protein is > 70% identical to the mammalian epsilon-isoform and > 90% identical to a previously reported yeast 14-3-3 protein encoded by BMH1. Single deletions of BMH1 or BMH2 have no discernable phenotypes, but deletion of both BMH1 and BMH2 is lethal. High-copy BMH1 also rescues inviable strains of Chc- yeast, although not as well as BMH2. In addition, the slow growth of viable strains of Chc- yeast is further impaired when combined with single bmh mutations, often resulting in lethality. Overexpression of BMH genes also partially suppresses the temperature sensitivity of the cdc25-1 mutant, and high-copy TPK1, encoding a cAMP-dependent protein kinase, restores Bmh- yeast to viability. High-copy TPK1 did not rescue Chc- yeast. These genetic interactions suggest that budding-yeast 14-3-3 proteins are multifunctional and may play a role in both vesicular transport and Ras signaling pathways.