951 resultados para Arbitrary detention
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
We study the photon-number distribution in squeezed states of a single-mode radiation field. A U(l)-invariant squeezing criterion is compared and contrasted with a more restrictive criterion, with the help of suggestive geometric representations. The U(l) invariance of the photon-number distribution in a squeezed coherent state, with arbitrary complex squeeze and displacement parameters, is explicitly demonstrated. The behavior of the photon-number distribution for a representative value of the displacement and various values of the squeeze parameter is numerically investigated. A new kind of giant oscillation riding as an envelope over more rapid oscillations in this distribution is demonstrated.
Resumo:
We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.
Resumo:
Symmetry?adapted linear combinations of valence?bond (VB) diagrams are constructed for arbitrary point groups and total spin S using diagrammatic VB methods. VB diagrams are related uniquely to invariant subspaces whose size reflects the number of group elements; their nonorthogonality leads to sparser matrices and is fully incorporated into a binary integer representation. Symmetry?adapated linear combinations of VB diagrams are constructed for the 1764 singlets of a half?filled cube of eight sites, the 2.8 million ??electron singlets of anthracene, and for illustrative S?0 systems.
Resumo:
The finite resolution of joint drives or sensors imparts a discrete nature to the joints of a manipulator. Because of this an arbitrary point in the workspace cannot be reached without error even in ideal mechanical environment. This paper investigates the effect of this discrete nature of the joints on the accuracy of performance of a manipulator and develops a method to select the joint states to reach a point with least error. It is shown that the configuration leading to least error cannot, in general, be found from configuration space, especially when there is large variation in the link lengths or joint resolutions or both. The anomaly becomes severe when the gross motion of the end-effector approaches the local resolution of the workspace. The paper also shows how to distinguish two workspaces which may be identical so far as the boundary points are concerned, taking the joint resolutions into account. Finally, the concepts have been extended to define continuous space global and local performance indices for general multi degree of freedom manipulators.
Resumo:
We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.
Resumo:
We consider the Kramers problem for a long chain polymer trapped in a biased double-well potential. Initially the polymer is in the less stable well and it can escape from this well to the other well by the motion of its N beads across the barrier to attain the configuration having lower free energy. In one dimension we simulate the crossing and show that the results are in agreement with the kink mechanism suggested earlier. In three dimensions, it has not been possible to get an analytical `kink solution' for an arbitrary potential; however, one can assume the form of the solution of the nonlinear equation as a kink solution and then find a double-well potential in three dimensions. To verify the kink mechanism, simulations of the dynamics of a discrete Rouse polymer model in a double well in three dimensions are carried out. We find that the time of crossing is proportional to the chain length, which is in agreement with the results for the kink mechanism. The shape of the kink solution is also in agreement with the analytical solution in both one and three dimensions.
Resumo:
Presented here, in a vector formulation, is an O(mn2) direct concise algorithm that prunes/identifies the linearly dependent (ld) rows of an arbitrary m X n matrix A and computes its reflexive type minimum norm inverse A(mr)-, which will be the true inverse A-1 if A is nonsingular and the Moore-Penrose inverse A+ if A is full row-rank. The algorithm, without any additional computation, produces the projection operator P = (I - A(mr)- A) that provides a means to compute any of the solutions of the consistent linear equation Ax = b since the general solution may be expressed as x = A(mr)+b + Pz, where z is an arbitrary vector. The rank r of A will also be produced in the process. Some of the salient features of this algorithm are that (i) the algorithm is concise, (ii) the minimum norm least squares solution for consistent/inconsistent equations is readily computable when A is full row-rank (else, a minimum norm solution for consistent equations is obtainable), (iii) the algorithm identifies ld rows, if any, and reduces concerned computation and improves accuracy of the result, (iv) error-bounds for the inverse as well as the solution x for Ax = b are readily computable, (v) error-free computation of the inverse, solution vector, rank, and projection operator and its inherent parallel implementation are straightforward, (vi) it is suitable for vector (pipeline) machines, and (vii) the inverse produced by the algorithm can be used to solve under-/overdetermined linear systems.
Resumo:
Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.
Resumo:
A theory is developed for diffusion-limited charge transfer on a non-fractally rough electrode. The perturbation expressions are obtained for concentration, current density and measured diffusion-limited current for arbitrary one- and two-dimensional surface profiles. The random surface model is employed for a rough electrode\electrolyte interface. In this model the gross geometrical property of an electrochemically active rough surface - the surface structure factor-is related to the average electrode current, current density and concentration. Under short and long time regimes, various morphological features of the rough electrodes, i.e. excess area (related to roughness slope), curvature, correlation length, etc. are related to the (average) current transients. A two-point Pade approximant is used to develop an all time average current expression in terms of partial morphological features of the rough surface. The inverse problem of predicting the surface structure factor from the observed transients is also described. Finally, the effect of surface roughness is studied for specific surface statistics, namely a Gaussian correlation function. It is shown how the surface roughness enhances the overall diffusion-limited charge transfer current.
Resumo:
The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.
Resumo:
A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.
Resumo:
A two-dimensional numerical model which employs the depth-averaged forms of continuity and momentum equations along with k-e turbulence closure scheme is used to simulate the flow at the open channel divisions. The model is generalised to flows of arbitrary geometries and MacCormack finite volume method is used for solving governing equations. Application of cartesian version of the model to analyse the flow at right-angled junction is presented. The numerical predictions are compared with experimental data of earlier investigators and measurements made as part of the present study. Performance of the model in predicting discharge distribution, surface profiles, separation zone parameters and energy losses is evaluated and discussed in detail. To illustrate the application of the numerical model to analyse the flow in acute angled offtakes and streamlined branch entries, a few computational results are presented.