946 resultados para Aquatic Biota


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PowerPoint presentation goes over the ways in which aquatics pest and weeds can be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ALqueva hydro-meteorological EXperiment (ALEX) field campaign took place monthly during summer 2014 and consisted in in situ measurements and sampling of water and biological elements, collected from three fixed platforms placed in the lacustrine zone. This integrated overview, including meteorological, environmental and biological results contributes to improve the knowledge of the reservoir dynamics and therefore to propose adequate management measures to preserve the observed biological integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, microbial pest control agents (MPCAs) have been worldwide used to reduce chemical pesticide use and to diminish the high risk of those compounds in the environment. Among various MPCAs, the nuclear polyhedrosis virus Baculovirus anticarsia is widely used in Brazil in the biological control of the velvet bean caterpillar. Although literature data do not show adverse effects of baculoviruses to nontarget organisms, it is necessary to evaluate their toxicity or patogenicity in order to study th environmental risk of those products and to register the formulations in the Brazilian Environmental Regularory Agency - IBAMA. In the presente work, the influence of a Baculovirus anticarsia formulation was evaluted to measure the consequences in the growth rateof the green algae Selenastrum capricornutum, the duckweed Lemna valdiviana and the microcrustacean Daphnia similis. The survival of the fish Hyphessobrycon scholzei exposed during 28 days was also evaluated. No significative adverse effects (P > 0.05) were observed in the test organisms which were exposed to 1-1000 times the maximum calculated pesticide concentration following a direct application to 15 cm layer of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clomazone (2-(2-chlorophenyl)methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate(AR).of 700g/ha. The herbicide input into the aquatic ecosystem may occur by aerial application or water drainage. The presence of this chemical in the water may affect non-target organisms leading to impairments in the aquatic food chain. Studies were conducted in this work to evaluate the risk of Clomazone using the estimated mean affective concentration (EC50) for the microalgae Selenastrum capricornutum(96h), the duckweed Lemna valdiviana(96h) and the crustacean Daphnia similis(48h). The EC50 values were 11.2; 31.7 and 13.8 mg/l, respectively. According to the obtained data, and considering a direct input of the herbicide in a 10cm column water, the estimated maximum application rate that doesn't cause acute effects is 5.3 AR for S. capricornutum, 6.5 AR for D. similis and 15.0 AR for L. valdiviana. The estimated maximum application rate that doesn't cause chronic effects is 2.0 AR for D. similis, 1.6 AR for S. capricornutum and 4.5 AR for L. valviana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: Predição da concentração de baixo risco de diflubenzuron para organismos aquáticos e avaliação da argila e brita na redução da toxicidade. O diflubenzuron é um inseticida que além de ser usado agricultura, tem sido amplamente empregado na piscicultura, apesar do seu uso ser proibido nesta atividade. Este composto não consta na lista da legislação brasileira que estabelece limites máximos permissíveis em corpos de água para a proteção das comunidades aquáticas. No presente trabalho, a partir da toxicidade do diflubenzuron em organismos não-alvo, foi calculada a concentração de risco para somente 5% das espécies (HC5). O valor deste parâmetro foi estimado em aproximadamente 7 x 10-6 mg L-1 . Este baixo valor é devido à extremamente alta toxicidade do diflubenzuron para dafnídeos e à grande variação de sensibilidade entre as espécies testadas. Dois matérias de relativamente baixo custo se mostraram eficientes na remoção da toxicidade do diflubenzuron de soluções contendo este composto. Dentre esses materiais, a argila expandida promoveu a redução em aproximadamente 50% da toxicidade de uma solução contendo diflubenzuron. Os resultados podem contribuir para políticas públicas no Brasil relacionadas ao estabelecimento de limites máximos permissíveis de xenobióticos no compartimento aquático. Também, para a pesquisa de matérias inertes e de baixo custo com potencial de remoção de xenobióticos presentes em efluentes da aquicultura ou da agricultura. Abstract: Diflubenzuron is an insecticide that, besides being used in the agriculture, has been widely used in fish farming. However, its use is prohibited in this activity. Diflubenzuron is not in the list of Brazilian legislation establishing maximum permissible limits in water bodies for the protection of aquatic communities. In this paper, according toxicity data of diflubenzuron in non-target organisms, it was calculated an hazardous concentration for only 5% of the species (HC5) of the aquatic community. This parameter value was estimated to be about 7 x 10 -6 mg L -1 . The low value is due to the extreme high toxicity of diflubenzuron to daphnids and to the large variation in sensitivity among the species tested. Two relatively low cost and inert materials were efficient in removing the diflubenzuron from solutions containing this compound. Among these materials, expanded clay shown to promote reduction of approximately 50% of the toxicity of a solution containing diflubenzuron. The results may contribute to the establishment of public policies in Brazil associated to the definition of maximum permissible limits of xenobiotics in the aquatic compartment. This study is also relevant to the search of low cost and inert materials for xenobiotics removal from aquaculture or agricultural effluents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to treat a water sample contaminated with glyphosate. Biopolymer membranes therefore potentially offer a versatile method to eliminate agricultural chemicals from water supplies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-element analyses of sediment samples from the Santos-Cubatão Estuarine System were carried out to investigate the spatial and seasonal variability of trace-element concentrations. The study area contains a rich mangrove ecosystem that is a habitat for tens of thousands of resident and migratory birds, some of them endangered globally. Enrichments of metals in fine-grained surface sediments are, in decreasing order, Hg, Mn, La, Ca, Sr, Cd, Zn, Pb, Ba, Cu, Cr, Fe, Nb, Y, Ni and Ga, relative to pre-industrial background levels. The maximum enrichment ranged from 49 (Hg) to 3.1 (Ga). Mercury concentrations were greater in the Cubatão river than in other sites, while the other elements showed greater concentrations in the Morrão river. Concentrations of Mn were significantly greater in winter and autumn than in summer and spring. However, other elements (e.g. Cd and Pb) showed the opposite, with greater concentrations in summer and spring. This study suggests that seasonal changes in physical and chemical conditions may affect the degree of sediment enrichment and therefore make the assessment of contamination difficult. Consequently, these processes need to be considered when assessing water quality and the potential contamination of biota.