986 resultados para Approximate Hahn–Banach theorem
Resumo:
Hydromorphone-3-glucuronide (H3G) was synthesized biochemically using rat liver microsomes, uridine-5'-diphosphoglucuronic acid (UDPGA) and the substrate, hydromorphone. Initially, the crude putative H3G product was purified by ethyl acetate precipitation and washing with acetonitrile, Final purification was achieved using semi-preparative high-performance-liquid-chromatography (HPLC) with ultraviolet (UV) detection. The purity of the final H3G product was shown by HPLC with electrochemical and ultraviolet detection to be > 99.9% and it was produced in a yield of approximate to 60% (on a molar basis). The chemical structure of the putative H3G was confirmed by enzymatic hydrolysis of the glucuronide moiety using P-glucuronidase, producing a hydrolysis product with the same HPLC retention time as the hydromorphone reference standard. Using HPLC with tandem mass spectrometry (HPLC-MS-MS) in the positive ionization mode, the molecular mass (M+1) was found to be 462 g/mol, in agreement with H3G's expected molecular weight of 461 g/mol. Importantly, proton-NMR indicated that the glucuronide moiety was attached at the 3-phenolic position of hydromorphone. A preliminary evaluation of H3G's intrinsic pharmacological effects revealed that following icy administration to adult male Sprague-Dawley rats in a dose of 5 mu g, H3G evoked a range of excitatory behavioural effects.including chewing, rearing, myoclonus, ataxia and tonic-clonic convulsions, in a manner similar to that reported previously for the glucuronide metabolites of morphine, morphine-3-glucuronide and normorphine-3-glucuronide.
Resumo:
Strategies for sampling sediment bacteria were examined in intensive shrimp, Penaeus monodon (Fabricius), ponds in tropical Australia. Stratified sampling of bacteria at the end of the production season showed that the pond centre, containing flocculated sludge, had significantly higher bacterial counts (15.5 X 10(9) g(-1) dw) than the pond periphery (8.1 X 10(9) g(-1) dw), where the action of aerators had swept the pond floor. The variation in bacterial counts between these two zones within a pond was higher than that between sites within each zone or between ponds. Therefore, sampling effort should be focused within these zones: for example, sampling two ponds at six locations within each of the two zones resulted in a coefficient of variation of approximate to 5%. Bacterial numbers in the sediment were highly correlated with sediment grain size, probably because eroded soil particles and organic waste both accumulated in the centre of the pond. Despite high inputs of organic matter added to the ponds, principally as pelleted feeds, the mean bacterial numbers and nutrient concentrations (i.e. organic carbon, nitrogen and phosphorus) in the sediment were similar to those found in mangrove sediments. This suggests that bacteria are rapidly remineralizing particulates into soluble compounds. Bacterial numbers were highly correlated with organic carbon and total kjeldahl nitrogen in the sediment, suggesting that these were limiting factors to bacterial growth.
Resumo:
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximate to 860 bp mtDNA control region as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene now currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.
Resumo:
We present numerical and analytical results for the Mollow probe absorption spectrum of a coherently driven two-level system in a narrow bandwidth squeezed vacuum field. The spectra are calculated for the case where the Rabi frequency of the driving field is much larger than the natural linewidth and the squeezed vacuum carrier frequency is detuned from the driving laser frequency. The driving laser is on resonance. We show that in a detuned squeezed vacuum the standard Mellow features are each split into triplets. The central components of each triplet are weakly dependent on the squeezing phase but the sidebands strongly depend on the phase and can have dispersive or absorptive/emissive profiles. We also derive approximate analytical expressions for the spectral features and find that the multi-peak structure of the spectrum can be interpreted either via the eigenfrequencies of a generalized Floquet Hamiltonian or in terms of three-photon transitions between dressed stales involving a probe field photon and a correlated photon pair from the squeezed vacuum field.
Resumo:
The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.
Resumo:
Chloramphenicol, an in vitro inhibitor of the glucuronidation of morphine to its putative antianalgesic metabolite, morphine-3-glucuronide (M3G), was coadministered with morphine in adult male Sprague-Dawley rats to determine whether it inhibited the in vivo metabolism of morphine to M3G, thereby enhancing morphine antinociception and/or delaying the development of antinociceptive tolerance. Parenteral chloramphenicol was given acutely (3-h studies) or chronically (48-h studies). Morphine was administered by the i.v. or i.c.v. route. Control rats received chloramphenicol and/or vehicle. Antinociception was quantified using the hotplate latency test. Coadministration of chloramphenicol with i.v. but not i.cv. morphine increased the extent and duration of morphine antinociception by approximate to 5.5-fold relative to rats that received i.v. morphine alone. Thus, the mechanism through which chloramphenicol enhances i.v. morphine antinociception in the rat does not directly involve supraspinal opioid receptors. Acutely, parenteral coadministration of chloramphenicol and morphine resulted in an approximate to 75% increase in the mean area under the serum morphine concentration-time curve but for chronic dosing there was no significant change in this curve, indicating that factors other than morphine concentrations contribute significantly to antinociception. Antinociceptive tolerance to morphine developed more slowly in rats coadministered chloramphenicol, consistent with our proposal that in vivo inhibition of M3G formation would result in increased antinociception and delayed development of tolerance. However, our data also indicate that chloramphenicol inhibited the biliary secretion of M3G. Whether chloramphenicol altered the passage of M3G and morphine across the blood-brain barrier remains to be investigated.
Resumo:
A comparison is made between the structures and calcium binding properties of four cyclic octapeptides that differ in the number of heterocyclic thiazole and oxazoline ring constraints. The conformations of the naturally occurring cyclic octapeptides ascidiacyclamide 1 and patellamide D 2, which each contain two oxazoline and two thiazole rings, are compared by H-1 NMR spectroscopy with the analogues cyclo(Thr-D-Val(Thz)-Ile)(2) 3 with just two thiazoles, and cyclo(Thr-D-Val-alpha Abu-Ile)(2) 4, with no 5-membered rings. The conformations observed in the solid state for ascidiacyclamide (saddle) and patellamide D (twisted figure of eight) were retained in solution, whilst peptide 3 was found to have a chair shape and peptide 4 displayed a range of conformations. The solid state structure of 4 revealed that the peptide takes a relatively planar conformation with a number of transannular hydrogen bonds, which are apparently retained in solution. Complexation studies utilising H-1 NMR and CD spectroscopy yielded 1∶1 calcium-peptide binding constants (log K) for the four peptides (2.9 (1), 2.8 (2), 4.0 (3) and 5.5 (4)) as well as a 1 : 2 metal-peptide binding constant for 3 (log K = 4.5). The affinity for Ca2+ thus decreases with increasing number of 5-membered ring constraints in the macrocycle (4 > 3 > 2 approximate to 1).
Resumo:
Dual-energy X-ray absorptiometry (DXA) is a widely used method for measuring bone mineral in the growing skeleton. Because scan analysis in children offers a number of challenges, we compared DXA results using six analysis methods at the total proximal femur (PF) and five methods at the femoral neck (FN), In total we assessed 50 scans (25 boys, 25 girls) from two separate studies for cross-sectional differences in bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) and for percentage change over the short term (8 months) and long term (7 years). At the proximal femur for the short-term longitudinal analysis, there was an approximate 3.5% greater change in bone area and BMC when the global region of interest (ROI) was allowed to increase in size between years as compared with when the global ROI was held constant. Trend analysis showed a significant (p < 0.05) difference between scan analysis methods for bone area and BMC across 7 years. At the femoral neck, cross-sectional analysis using a narrower (from default) ROI, without change in location, resulted in a 12.9 and 12.6% smaller bone area and BMC, respectively (both p < 0.001), Changes in FN area and BMC over 8 months were significantly greater (2.3 %, p < 0.05) using a narrower FN rather than the default ROI, Similarly, the 7-year longitudinal data revealed that differences between scan analysis methods were greatest when the narrower FN ROI was maintained across all years (p < 0.001), For aBMD there were no significant differences in group means between analysis methods at either the PF or FN, Our findings show the need to standardize the analysis of proximal femur DXA scans in growing children.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi-liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m(c)*/m(e) similar to 1 - 7, suggesting that these systems are strongly correlated. However, the ratio m(c)*/m(e) contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density-of-states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m(c) for several model band structures for the beta, kappa, and theta families of (BEDT-TTF)(2)X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for kappa-(BEDT-TTF)(2)X, the cyclotron mass of the beta orbit, m(c)*(beta) is close to 2 m(c)*(alpha), where m(c)*(alpha) is the effective mass of the alpha orbit. This result is fairly insensitive to the band-structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band-structure calculations to values deduced from measurements of magnetic oscillations and the specific-heat coefficient gamma.
Resumo:
Our previous studies indicate that oxycodone is a putative kappa-opioid agonist, whereas morphine is a well documented mu-opioid agonist. Because there is limited information regarding the development of tolerance to oxycodone, this study was designed to 1) document the development of tolerance to the antinociceptive effects of chronically infused i.v. oxycodone relative to that for i.v. morphine and 2) quantify the degree of antinociceptive cross-tolerance between morphine and oxycodone in adult male Dark Agouti (DA) rats. Antinociceptive testing was performed using the tail-flick latency test. Complete antinociceptive tolerance was achieved in 48 to 84 h after chronic infusion of equi-antinociceptive doses of i.v. oxycodone (2.5 mg/24 h and 5 mg/24 h) and i.v. morphine (10 mg/24 h and 20 mg/24 h, respectively). Dose-response curves for bolus doses of i.v. and i.c.v. morphine and oxycodone were produced in naive, morphine-tolerant, and oxycodone-tolerant rats. Consistent with our previous findings that oxycodone and morphine produce their intrinsic antinociceptive effects through distinctly different opioid receptor populations, there was no discernible cross-tolerance when i.c.v. oxycodone was given to morphine-tolerant rats. Similarly, only a low degree of cross-tolerance (approximate to 24%) was observed after i.v. oxycodone administration to morphine-tolerant rats. By contrast, both i.v. and i.c.v. morphine showed a high degree of cross-tolerance (approximate to 71% and approximate to 54%, respectively) in rats rendered tolerant to oxycodone. Taken together, these findings suggest that, after parenteral but not supraspinal administration, oxycodone is metabolized to a mu-opioid agonist metabolite, thereby explaining asymmetric and incomplete cross-tolerance between oxycodone and morphine.
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Objective: The objective of this study was to examine trends in suicide among 15-34-year-olds living in Australian metropolitan and non-metropolitan areas between 1988 and 1997. Method: Suicide and population data were obtained from the Australian Bureau of Statistics. We calculated overall and method-specific suicide rates for 15-24 and 25-34-year-old males and females separately, according to area of residence defined as non-metropolitan (less than or equal to 20 000 people) or metropolitan. Results: Between 1988 and 1997 suicide rates in 15-24-year-old non-metropolitan males were consistently 50% higher than metropolitan 15-24-year-olds. In 1995-1997, for example, the rates were: 38.2 versus 25.1 per 100 000 respectively (p < 0.0001). The reverse pattern was seen in 25-34-year-old females with higher rates in metropolitan areas (7.5 per 100 000) compared with non-metropolitan areas (6.1 per 100 000, p = 0.21) in 1995-1997. There were no significant differences according to area of residence in 25-34-year-old males or 15-24-year-old females. Over the years studied we found no clear evidence that suicide rates increased to a greater extent in rural than urban areas. Rates of hanging suicide have approximately doubled in both sexes and age groups in both settings over this time. Despite an approximate halving in firearm suicide, rates remain 3-fold higher among non-metropolitan residents. Conclusion: Non-metropolitan males aged 15-24 years have disproportionately higher rates of suicide than their metropolitan counterparts. Reasons for this require further investigation. Hanging is now the most favoured method of non-metropolitan suicide replacing firearms from 10 years ago. Although legislation may reduce method-specific suicide the potential for method-substitution means that overall rates may not fall. More comprehensive interventions are therefore required.
Resumo:
This work addresses the question of whether it is possible to define simple pairwise interaction terms to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice model system one can calculate exact free energies by exhaustive enumeration. A series of approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy terms. Approximating the true free energy with pairwise interactions gives a poor fit with little transferability between systems of different size. Adding extra artificial terms to the approximation yields better fits, but does not improve the ability to generalize from one system size to another. Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free energies. Most usefully, the methodology shows how one can assess the utility of various terms in lattice protein/polymer models. (C) 2001 American Institute of Physics.
Resumo:
Tidal fluctuations in a leaky confined coastal aquifer are damped significantly due to leakage into an overlying phreatic aquifer. Jiao and Tang [1999] presented an analytical solution to a simple model describing this phenomenon. Their solution assumes that the tidal fluctuations in the overlying phreatic aquifer are negligible (i.e,, a static phreatic aquifer), Here we examine dynamic effects of the overlying aquifer based on a new approximate analytical solution. The numerical results indicate that the dynamic effects can be significant for a relatively large leakage and a high transmissivity of the phreatic aquifer.