914 resultados para Angle of rotation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a novel method of actuation for robotic hands. The solution employs a Bowden cable routed to each joint. The use of a Bowden cable is shown to be feasible for this purpose, ever, with the changing frictional forces associated with it. This method greatly simplifies the control of the hand by removing the coupling between joints, and provides for direct and accurate translation between the joints and the servo motors driving the cables. The design also allows for two degrees of freedom with the same centre of rotation to be realized in the largest knuckle of each finger; thus biological finger kinematics are more closely emulated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 1,1' bis(diphenylphosphino ferrocene) dioxide complex of uranyl nitrate was synthesized and characterized by IR, H-1 and P-31{H-1} NMR spectroscopic and X-ray diffraction methods. The structure of the compound shows that the uranium atom is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Two oxygen atoms from 1,1' bis(diphenylphosphino ferrocene) dioxide ligand and four oxygen atoms from the nitrate groups form a planar hexagon. The two uranyl oxygen atoms occupy the axial position. The 1,1' bis(diphenylphosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 71.56(8)degrees around the uranium(VI) atom, which is much smaller in value compare to any of the previously reported values (90.1 degrees-154.0 degrees) for this ligand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure of the duplex d[CG(5-BrU)ACG]2 bound to 9-bromophenazine-4-carboxamide has been solved through MAD phasing at 2.0 Å resolution. It shows an unexpected and previously unreported intercalation cavity stabilized by the drug and novel binding modes of Co2+ ions at certain guanine N7 sites. For the intercalation cavity the terminal cytosine is rotated to pair with the guanine of a symmetry-related duplex to create a pseudo-Holliday junction geometry, with two such cavities linked through the minor groove interactions of the N2/N3 guanine sites at an angle of 40°, creating a quadruplex-like structure. The mode of binding of the drug is shown to be disordered, with the major conformations showing the side chain bound to the N7 position of adjacent guanines. The other end of the duplex exhibits a terminal base fraying in the presence of Co2+ ions linking symmetry-related guanines, causing the helices to intertwine through the minor groove. The stabilization of the structure by the intercalating drug shows that this class of compound may bind to DNA junctions as well as duplex DNA or to strand-nicked DNA (‘hemi-intercalated'), as in the cleavable complex. This suggests a structural basis for the dual poisoning of topoisomerase I and II enzymes by this family of drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The IR and ligand field spectra and the structure of the mixed-ligand compound [N,N-dimethyl-N′-ethyl-1,2-diaminoethane(1-phenyl-1,3-butanedionato)(perchlorato)copper(II)]), [Cu(dmeen)bzac(OClO3)], are reported. The structure was determined by single crystal X-ray diffraction analysis (triclinic, space group ). The structure is square pyramidal with the apical position occupied by one oxygen of the tetrahedral perchlorato group (distance from copper 2.452(5) Å). The plane of the phenyl ring is tilted forming an angle of 16.72(14)° with the plane of the β-dionato moiety. The nitrogenous base adopts the gauche conformation with torsional angle of 108.72(14)°. The ethyl group is cis oriented relative to the phenyl group, occupying the equatorial position with the vector of the carbon-nitrogen bond forming an angle of 143.9(3)° with the CuNN plane. The interactions of the adjacent axial hydrogen with an oxygen of the perchlorato group result in hydrogen bond formation. The IR spectra reveal that in the solid state the Br− or Cl− displace easily the ClO4− group. The shifts in the ligand field spectra indicate that polar solvents participate in donor-acceptor interactions with the metal centre along an axis perpendicular to the CuN2O2 plane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

d(ACGTACGT), C78H84N30O32P7.20H2O, Mr (DNA) = 2170, tetragonal, P43212 (No 96), a = 42.845 (1), b = 42.845(1), c = 24.804 (1) Å, V = 45532.5 (2) Å3, z = 8,(MoK) = 0.71069 Å,µ(MoK) = 0.10 mm-1, T = 295 K, R = 0.18 for 1994 unique reflections between 5.0 and 1.9 Å resolution. The self-complementary octanucleotide d(ACGTACGT)2 has been crystallized and its structure determined to a resolution of 1.9 Å. The asymmetric unit consists of a single strand of octamer with 20 water molecules. It is only the second example of an octanucleotide having terminal A·T base pairs whose structure has been determined by X-ray crystallography. The sequence adopts the modified A-type conformation found for all octanucleotide duplexes studied to date with the helix bent by approximately 15° and an average tilt angle of 0°. Unusually the data collection was carried out using a 3 kW molybdenum sealed-tube source. The conformational details are discussed in comparison with other closely related sequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The non-electrolyte dichloro(hydroxy-methoxy-di(2-pyridylmethane)copper(II), resulting from the reaction of di(2-pyridyl)ketone and copper(II) chloride in methanol solution, was isolated and characterized and its structure was determined by X-ray diffraction. The pyridyl nitrogens and the chloride anions virtually from a basal plane in which lies the copper atom, while the oxygen of the methoxy group is in an apical position at a distance of 2.497 (3)Å. The nitrogenous base adopts the boat conformation with the pyridyl rings forming a dihedral angle of 108.72 (14)°. The nearest interatomic copper distance of 3.940(3)Å precludes copper-copper interactions, while the proximity of copper to the out-of-plane chlorine atoms [3.109(3)Å] suggests weakly bound chloro-bridged dimers. Spectral changes indicate that protic molecules displace the methoxy group and water affords the corresponding 1,1-diol.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The molecular structure of trans-[PtCl(CCPh)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are monoclinic, space group P21, with a= 12.359(3), b= 13.015(3), c= 9.031(2)Å, β= 101.65(2)°, and Z= 2. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.046 for 1 877 diffractometric intensity data. The crystals contain discrete molecules in which the platinum coordination is square planar. The phenylethynyl group is non-linear, with a Pt–CC angle of 163(2)°. Selected bond lengths are Pt–Cl 2.407(5) and Pt–C 1.98(2)Å. The structural trans influences of CCPh, CHCH2, and CH2SiMe3 ligands in platinum(II) complexes are compared; there is only a small dependence on hybridization at the ligating carbon atom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 1,1' bis(diphenyl phosphino ferrocene) dioxide complex of the uranyl dichloride was synthesized and characterized by elemental analysis, H-1, P-31{H-1} NMR and X-ray diffraction methods. The structure of the compound shows that the uranium(VI) ion is surrounded by four oxygen and two chlorine atoms in an octahedral geometry. Two oxygen atoms from the bis (diphenyl phosphino ferrocene) dioxide and two chlorine atoms form a square planar arrangement. Two uranyl oxygen atoms occupy the axial positions. The bis(diphenyl phosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 82.90(16)degrees around the uranyl group. The two chlorine atoms are mutually cis with a CI-U-Cl angle of 97.75(7)degrees.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reaction of five 4R-benzaldehyde thiosemicarbazones (R = OCH3, CH3, H, Cl and NO2) with [ Ru(PPh3)(3)(-CO)(H) Cl] in refluxing methanol in the presence of a base (NEt3) affords complexes of two different types, viz. 1-R and 2-R. In the 1-R complexes the thiosemicarbazone is coordinated to ruthenium as a dianionic tridentate C,N,S-donor via C-H bond activation. Two triphenylphosphines and a carbonyl are also coordinated to ruthenium. The tricoordinated thiosemicarbazone ligand is sharing the same equatorial plane with ruthenium and the carbonyl, and the PPh3 ligands are mutually trans. In the 2-R complexes the thiosemicarbazone ligand is coordinated to ruthenium as a monoanionic bidentate N, S-donor forming a four-membered chelate ring with a bite angle of 63.91(11)degrees. Two triphenylphosphines, a carbonyl and a hydride are also coordinated to ruthenium. The coordinated thiosemicarbazone ligand, carbonyl and hydride constitute one equatorial plane with the metal at the center, where the carbonyl is trans to the coordinated nitrogen of the thiosemicarbazone and the hydride is trans to the sulfur. The two triphenylphosphines are trans. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the complexes show intense transitions in the visible region, which are assigned, based on DFT calculations, to transitions within orbitals of the thiosemicarbazone ligand. Cyclic voltammetry on the complexes shows two oxidations of the coordinated thiosemicarbazone on the positive side of SCE and a reduction of the same ligand on the negative side.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.