983 resultados para Alveolar ridge augmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early implant placement is one of the treatment options after tooth extraction. Implant surgery is performed after a healing period of 4 to 8 weeks and combined with a simultaneous contour augmentation using the guided bone regeneration technique to rebuild stable esthetic facial hard- and soft-tissue contours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplasty", using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called "vertebral body stenting" (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean +/- SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 +/- 6.2; VBS: 3.7 +/- 3.8], and total anterior height gain [kyphoplasty: 8.0 +/- 9.4; VBS: 13.3 +/- 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release and ceramide accumulation. We sought to investigate CF lung inflammation in the alveoli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Failing cerebral blood flow (CBF) autoregulation may contribute to cerebral damage after traumatic brain injury (TBI). The purpose of this study was to describe the time course of CO(2)-dependent vasoreactivity, measured as CBF velocity in response to hyperventilation (vasomotor reactivity [VMR] index). We included 13 patients who had had severe TBI, 8 of whom received norepinephrine (NE) based on clinical indication. In these patients, measurements were also performed after dobutamine administration, with a goal of increasing cardiac output by 30%. Blood flow velocity was measured with transcranial Doppler ultrasound in both hemispheres. All patients except one had an abnormal VMR index in at least one hemisphere within the first 24 h after TBI. In those patients who did not receive catecholamines, mean VMR index recovered within the first 48 to 72 h. In contrast, in patients who received NE within the first 48 h period, VMR index did not recover on the second day. Cardiac output and mean CBF velocity increased significantly during dobutamine administration, but VMR index did not change significantly. In conclusion, CO(2) vasomotor reactivity was abnormal in the first 24 h after TBI in most of the patients, but recovered within 48 h in those patients who did not receive NE, in contrast to those eventually receiving the drug. Addition of dobutamine to NE had variable but overall insignificant effects on CO(2) vasomotor reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate maxillary dental arch dimensions in pre-school children with a complete unilateral cleft lip and palate (CUCLP) after early alveolar bone grafting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer most probably originates from stem/progenitor cells and exhibits a similar cell hierarchy as normal tissues. Moreover, there is growing evidence that only the stem cells are capable of metastasis formation. We have previously shown that overexpression of a dominant negative ephrin-B2 mutant interferes with mammary gland differentiation and confers a metastatic phenotype to NeuT-induced mammary tumors with an increase in cells with stem/progenitor characteristics. To investigate the role of ephrin-B2 in the control of the mammary stem cell niche, we analyzed the mammary stem and progenitor cell populations in transgenic mice overexpressing the mutant ephrin-B2. Quantification by FACS analysis revealed a significant increase of cells in the basal/alveolar cell-, the bi-potent progenitor- and the stem cell-enriched fractions. Moreover, the supposed precursors of estrogen receptor-positive cells were elevated in the stem cell-enriched fraction. In contrast, the epithelium from transgenic mice overexpressing the native ephrin-B2 gene showed an augmentation of the luminal cell- and the bi-potent progenitor-enriched fractions. Repopulation assays revealed that the epithelial cells of truncated ephrin-B2 transgenic epithelial cells have a higher regeneration capacity than those of controls and of native ephrin-B2 transgenic mice, confirming the augmentation of stem cells. Morphologically, these outgrowths exhibited impaired basal/luminal compartmentalization and epithelial polarization. These results demonstrate that deregulated ephrin-B2 expression interferes with the regulation of the stem cell niche and leads to a shift of the differentiation pathway and may thereby contribute to the acquisition of the metastatic phenotype long before carcinogenic growth becomes apparent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).