957 resultados para Aerial photogrammetry
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.
Resumo:
Mapping of vegetation patterns over large extents using remote sensing methods requires field sample collections for two different purposes: (1) the establishment of plant association classification systems from samples of relative abundance estimates; and (2) training for supervised image classification and accuracy assessment of satellite data derived maps. One challenge for both procedures is the establishment of confidence in results and the analysis across multiple spatial scales. Continuous data sets that enable cross-scale studies are very time consuming and expensive to acquire and such extensive field sampling can be invasive. The use of high resolution aerial photography (hrAP) offers an alternative to extensive, invasive, field sampling and can provide large volume, spatially continuous, reference information that can meet the challenges of confidence building and multi-scale analysis.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1269/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1273/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1272/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1271/thumbnail.jpg
Resumo:
The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.
Resumo:
La tesi approccia in modo transdisciplinare biologia, architettura e robotica, con la finalità di indagare e applicare principi costruttivi attraverso l’interazione tra sciami di droni che depositano materiale fibroso su strutture gonfiabili di supporto. L’attenzione principale è nello sviluppo (attraverso un workflow computazionale che gestisce sciami di agenti costruttori) di una tettonica che integra struttura, spazio e ornamento all’interno dello stesso processo progettuale, il quale si sviluppa coerentemente dall’ideazione fino alla fabbricazione. Sono stati studiati modelli biologici quali le colonie di ragni sociali, i quali costruiscono artefatti di grandi dimensioni relativamente a quelle del singolo individuo grazie ad un’organizzazione coordinata ed emergente e alle proprietà dei sistemi fibrosi. L’auto-organizzazione e la decentralizzazione, insieme alle caratteristiche del sistema materiale, sono stati elementi indispensabili nell’estrapolazione prima e nella codificazione poi di un insieme di regole adatte allo sviluppo del sistema costruttivo. Parallelamente alla simulazione digitale si è andati a sviluppare anche un processo fisico di fabbricazione che, pur tenendo conto dei vincoli economici e tecnici, potesse dimostrarsi una prova di concetto e fattibilità del sistema costruttivo. Sono state investigate le possibilità che un drone offre nel campo della fabbricazione architettonica mediante il rilascio di fili su elementi gonfiabili in pressione. Il processo può risultare vantaggioso in scenari in cui non è possibile allestire infrastrutture costruttive tradizionali (es. gole alpine, foreste). Tendendo conto dei vincoli e delle caratteristiche del sistema di fabbricazione proposto, sono state esplorate potenzialità e criticità del sistema studiato.
Resumo:
Acknowledgements We thank the Muséum National d'Histoire Naturelle, Paris, that provided access to the specimens, and access to the morphometric platform where the surface scans were performed. We also thank Raphael Cornette and Julien Claude for the fruitful discussions we had when writing the manuscript. This work was supported by NERC (grant number NE/K003259/1) and the European Research Council (ERC-2013-StG 337574-UNDEAD). This is publication ISEM 2016-127. We thank the two anonymous reviewers who greatly helped to improve the manuscript.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Laura Kurgan’s Monochrome Landscapes (2004), first exhibited in the Whitney Museum of American Art in New York City, consists of four oblong Cibachrome prints derived from digital files sourced from the commercial Ikonos and QuickBird satellites. The prints are ostensibly flat, depthless fields of white, green, blue, and yellow, yet the captions provided explain that the sites represented are related to contested military, industrial, and cartographic practices. In Kurgan’s account of Monochrome Landscapes she explains that it is in dialogue with another work from the Whitney by abstract artist Ellsworth Kelly. This article pursues the relationship between formalist abstraction and satellite imaging in order to demonstrate how formalist strategies aimed at producing an immediate retinal response are bound up with contemporary uses of digital information and the truth claims such information can be made to substantiate.