829 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative structure-activity/property relationships (QSAR/QSPR) studies have been exploited extensively in the designs of drugs and pesticides, but few such studies have been applied to the design of colour reagents. In this work, the topological indices A(x1)-A(x3) suggested in this laboratory were applied to multivariate analysis in structure-property studies. The topological indices of 43 phosphone bisazo derivatives of chromotropic acid were calculated. The structure-property relationships between colour reagents and their colour reactions with cerium were studied using A(x1-Ax3) indices with satisfactory results. The purpose of this work was to establish whether QSAR can be used to predict the contrasts of colour reactions and in the longer term to be a helpful tool in colour reagent design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the new topological indices A(x1)-A(x3) suggested in our laboratory and molecular connectivity indices have been applied to multivariate analysis in structure-property studies. The topological indices of twenty asymmetrical phosphono bisazo derivatives of chromotropic acid have been calculated. The structure-property relationships between colour reagents and their colour reactions with ytterbium have been studied by A(x1)-A(x3) indices and molecular connectivity indices with satisfactory results. Multiple regression analysis and neural networks were employed simultaneously in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative structure-toxicity models were developed that directly link the molecular structures of a et of 50 alkYlated and/or halogenated phenols with their polar narcosis toxicity, expressed as the negative logarithm of the IGC50 (50% growth inhibitor

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Q. Meng and M.H. Lee, 'Biologically inspired automatic construction of cross-modal mapping in robotic eye/hand systems', IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006,) ,4742-49, Beijing, 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What brain mechanisms underlie autism and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the iSTART model, which proposes how cognitive, emotional, timing, and motor processes may interact together to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-035437, DEG-0221680); Office of Naval Research (N00014-01-1-0624)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225)