965 resultados para Adaptative projection


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper extends a state projection method for structure preserving model reduction to situations where only a weaker notion of system structure is available. This weaker notion of structure, identifying the causal relationship between manifest variables of the system, is especially relevant is settings such as systems biology, where a clear partition of state variables into distinct subsystems may be unknown, or not even exist. The resulting technique, like similar approaches, does not provide theoretical performance guarantees, so an extensive computational study is conducted, and it is observed to work fairly well in practice. Moreover, conditions characterizing structurally minimal realizations and sufficient conditions characterizing edge loss resulting from the reduction process, are presented. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a unidirectional, ipsilateral and monosynaptic projection from the hippocampus to the prefrontal cortex. The cognitive function of hippocampal-prefrontal cortical circuit is not well established. In this paper, we use muscimol treated rats to inv

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past 20 years, ferroelectric liquid crystal over silicon (FLCOS) devices have made a wide impact on applications as diverse as optical correlation and holographic projection. To cover the entire gamut of this technology would be difficult and long winded; hence, this paper describes the significant developments of FLCOS within the Engineering Department at the University of Cambridge.The purpose of this paper is to highlight the key issues in fabricating silicon backplane spatial light modulators (SLMs) and to indicate ways in which the technology can be fabricated using cheap, low-density production and manufacturability. Three main devices have been fabricated as part of several research programmes and are documented in this paper. The fast bitplane SLM and the reconfigurable optical switches for aerospace and telecommunications systems (ROSES) SLM will form the basis of a case study to outline the overall processes involved. There is a great deal of commonality in the fabrication processes for all three devices, which indicates their potential strength and demonstrates that these processes can be made independent of the SLMs that are being assembled. What is described is a generic process that can be applied to any silicon backplane SLM on a die-by-die basis. There are hundreds of factors that can affect the yield in a manufacturing process and the purpose of a good process design procedure is to minimise these factors. One of the most important features in designing a process is fabrication experience, as so many of the lessons in this business can only be learned this way. We are working with the advantage of knowing the mistakes already made in the flat panel display industry, but we are also faced with the fact that those mistakes took many years and many millions of dollars to make.The fabrication process developed here originates and adapts earlier processes from various groups around the world. There are also a few totally new processes that have now been adopted by others in the field. Many, such as the gluing process, are still on-going and have to be worked on more before they will fully suit 'manufacturability'. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconstruction of an image from a set of projections has been adapted to generate multidimensional nuclear magnetic resonance (NMR) spectra, which have discrete features that are relatively sparsely distributed in space. For this reason, a reliable reconstruction can be made from a small number of projections. This new concept is called Projection Reconstruction NMR (PR-NMR). In this paper, multidimensional NMR spectra are reconstructed by Reversible Jump Markov Chain Monte Carlo (RJMCMC). This statistical method generates samples under the assumption that each peak consists of a small number of parameters: position of peak centres, peak amplitude, and peak width. In order to find the number of peaks and shape, RJMCMC has several moves: birth, death, merge, split, and invariant updating. The reconstruction schemes are tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Choosing a project manager for a construction project—particularly, large projects—is a critical project decision. The selection process involves different criteria and should be in accordance with company policies and project specifications. Traditionally, potential candidates are interviewed and the most qualified are selected in compliance with company priorities and project conditions. Precise computing models that could take various candidates’ information into consideration and then pinpoint the most qualified person with a high degree of accuracy would be beneficial. On the basis of the opinions of experienced construction company managers, this paper, through presenting a fuzzy system, identifies the important criteria in selecting a project manager. The proposed fuzzy system is based on IF-THEN rules; a genetic algorithm improves the overall accuracy as well as the functions used by the fuzzy system to make initial estimates of the cluster centers for fuzzy c-means clustering. Moreover, a back-propagation neutral network method was used to train the system. The optimal measures of the inference parameters were identified by calculating the system’s output error and propagating this error within the system. After specifying the system parameters, the membership function parameters—which by means of clustering and projection were approximated—were tuned with the genetic algorithm. Results from this system in selecting project managers show its high capability in making high-quality personnel predictions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current state-of-the-art techniques for determination of the change in volume of human chests, used in lung-function measurement, calculate the volume bounded by a reconstructed chest surface and its projection on to an approximately parallel static plane over a series of time instants. This method works well so long as the subject does not move globally relative to the reconstructed surface's co-ordinate system. In practice this means the subject has to be braced, which restricts the technique's use. We present here a method to compensate for global motion of the subject, allowing accurate measurement while free-standing, and also while undergoing intentional motion. © 2012 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we adopt a differential-geometry viewpoint to tackle the problem of learning a distance online. As this problem can be cast into the estimation of a fixed-rank positive semidefinite (PSD) matrix, we develop algorithms that exploits the rich geometry structure of the set of fixed-rank PSD matrices. We propose a method which separately updates the subspace of the matrix and its projection onto that subspace. A proper weighting of the two iterations enables to continuously interpolate between the problem of learning a subspace and learning a distance when the subspace is fixed. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hip fracture is the leading cause of acute orthopaedic hospital admission amongst the elderly, with around a third of patients not surviving one year post-fracture. Although various preventative therapies are available, patient selection is difficult. The current state-of-the-art risk assessment tool (FRAX) ignores focal structural defects, such as cortical bone thinning, a critical component in characterizing hip fragility. Cortical thickness can be measured using CT, but this is expensive and involves a significant radiation dose. Instead, Dual-Energy X-ray Absorptiometry (DXA) is currently the preferred imaging modality for assessing hip fracture risk and is used routinely in clinical practice. Our ambition is to develop a tool to measure cortical thickness using multi-view DXA instead of CT. In this initial study, we work with digitally reconstructed radiographs (DRRs) derived from CT data as a surrogate for DXA scans: this enables us to compare directly the thickness estimates with the gold standard CT results. Our approach involves a model-based femoral shape reconstruction followed by a data-driven algorithm to extract numerous cortical thickness point estimates. In a series of experiments on the shaft and trochanteric regions of 48 proximal femurs, we validated our algorithm and established its performance limits using 20 views in the range 0°-171°: estimation errors were 0:19 ± 0:53mm (mean +/- one standard deviation). In a more clinically viable protocol using four views in the range 0°-51°, where no other bony structures obstruct the projection of the femur, measurement errors were -0:07 ± 0:79 mm. © 2013 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work applies a variety of multilinear function factorisation techniques to extract appropriate features or attributes from high dimensional multivariate time series for classification. Recently, a great deal of work has centred around designing time series classifiers using more and more complex feature extraction and machine learning schemes. This paper argues that complex learners and domain specific feature extraction schemes of this type are not necessarily needed for time series classification, as excellent classification results can be obtained by simply applying a number of existing matrix factorisation or linear projection techniques, which are simple and computationally inexpensive. We highlight this using a geometric separability measure and classification accuracies obtained though experiments on four different high dimensional multivariate time series datasets. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current methods for formation of detected chess-board vertices into a grid structure tend to be weak in situations with a warped grid, and false and missing vertex-features. In this paper we present a highly robust, yet efficient, scheme suitable for inference of regular 2D square mesh structure from vertices recorded both during projection of a chess-board pattern onto 3D objects, and in the more simple case of camera calibration. Examples of the method's performance in a lung function measuring application, observing chess-boards projected on to patients' chests, are given. The method presented is resilient to significant surface deformation, and tolerates inexact vertex-feature detection. This robustness results from the scheme's novel exploitation of feature orientation information. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 John P. Cunningham and Zoubin Ghahramani. Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategic innovation has been shown to provide significant value for organisations whilst at the same time challenging traditional ways of thinking and working. There is less known, however, as to how organisations collaborate in innovation networks to achieve strategic innovation. In this paper we explore how innovation networks are orchestrated in developing a strategic innovation initiative around the Internet of Things. We show how a hub actor brings together a diverse group of actors to initially create and subsequently orchestrate the strategic innovation network through the employ of three dialogical strategies, namely persuasive projection, reflective development, and definitional control. Further, we illuminate how different types of legitimacy are established through these various dialogical strategies in orchestrating strategic innovation networks.