933 resultados para Acyclic molecules
Resumo:
Ab initio calculations of the energy have been made at approximately 150 points on the two lowest singlet A' potential energy surfaces of the water molecule, 1A' and 1A', covering structures having D∞h, C∞v, C2v and Cs symmetries. The object was to obtain an ab initio surface of uniform accuracy over the whole three-dimensional coordinate space. Molecular orbitals were constructed from a double zeta plus Rydberg basis, and correlation was introduced by single and double excitations from multiconfiguration states which gave the correct dissociation behaviour. A two-valued analytical potential function has been constructed to fit these ab initio energy calculations. The adiabatic energies are given in our analytical function as the eigenvalues of a 2 2 matrix, whose diagonal elements define two diabatic surfaces. The off-diagonal element goes to zero for those configurations corresponding to surface intersections, so that our adiabatic surface exhibits the correct Σ/II conical intersections for linear configurations, and singlet/triplet intersections of the O + H2 dissociation fragments. The agreement between our analytical surface and experiment has been improved by using empirical diatomic potential curves in place of those derived from ab initio calculations.
Resumo:
Formulas are derived for the quartic anharmonic resonance coefficients observed to be important between C–H stretching and the combination of one quantum of C≡C stretching and two quanta of H–C≡C bending in a number of acetylene molecules. Examples of this resonance are ν3 with ν2+ν4+ν5 in 12C2H2, ν1 with ν2+2ν5 in 13C2H2, and ν1 with ν2+2ν4 in monofluoroacetylene and monochloroacetylene. The coefficients characterizing the resonances in these examples, which we denote K3,245, K1,255, and K1,244, arise from cubic and quartic terms in the anharmonic force field, in the normal coordinate representation, through second order and first order perturbation treatments respectively, where the second order resonances are calculated by a Van Vleck resonance formalism. The experimentally determined values of these coefficients are compared with values calculated from model anharmonic force fields.
Resumo:
The different types of surface intersection which may occur in linear configurations of triatomic molecules are reviewed, particularly with regard to the way in which the degeneracy is split as the molecule bends. The Renner-Teller effect in states of symmetry Π, Δ, Φ, etc., and intersections between Σ and Π, Σ and Δ, and Π and Δ states are discussed. A general method of modelling such intersecting potential surfaces is proposed, as a development of the model previously used by Murrell and Carter and co-workers for single-valued surfaces. Some of the lower energy surfaces of H2O, NH2, O3, C3, and HNO are discussed as examples.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.
Resumo:
We report rigorous calculations of rovibrational energies and dipole transition intensities for three molecules using a new version of the code MULTIMODE. The key features of this code which permit, for the first time, such calculations for moderately sized but otherwise general polyatomic molecules are briefly described. Calculations for the triatomic molecule BF(2) are done to validate the code. New calculations for H(2)CO and H(2)CS are reported; these make use of semiempirical potentials but ab initio dipole moment surfaces. The new dipole surface for H(2)CO is a full-dimensional fit to the dipole moment obtained with the coupled-cluster with single and double excitations and a perturbative treatment of triple excitations method with the augmented correlation consistent triple zeta basis set. Detailed comparisons are made with experimental results from a fit to relative data for H(2)CS and absolute intensities from the HITRAN database for H(2)CO.
Resumo:
X-ray diffraction studies show that peptides Boc-Leu-Aib-m-ABA-OMe (I) (Aib, alpha-aminoisobutyric acid; m-ABA, meta-aminobenzoic acid) and Boc-Phe-Aib-m-ABA-OMe, (II) adopt a type-II beta-turn conformation, solely stabilized by co-operative steric interactions amongst the amino acid residues. This type of U-turn without any intramolecular hydrogen bonding is generally referred to as an open turn. Although there are some examples of constrained cyclic peptides in which o-substituted benzenes have been inserted to mimic the turn region of the neurotrophin, a nerve growth factor, peptides I and II present novel two examples where m-aminobenzoic acid has been incorporated in the beta-turn of acyclic tripeptides. The result also demonstrates the first crystallographic evidence of a beta-turn structure containing an inserted m-aminobenzoic acid, which can be considered as a rigid gamma-aminobutyric acid with an all-trans extended configuration. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Single crystal X-ray diffraction studies and solvent dependent NMR titration reveal that the designed pepticles I and 11, Boc-Xx(1)-Aib(2)-Yy(3)-NH(CH2)(2)NH-Yy(3)-Aib(2)-Xx(1)-Boc, where Xx and Yy are lie and Leu in peptide I and Leu and Val in peptide 11, respectively, fold into a turn-linker-turn (T-L-T) conformation both in the solid state and in solution. In the crystalline state the T-L-T foldamers; of peptide I and II self-assemble to form a three-dimensional framework of channels. The insides of the channels are hydrophilic and found to contain solvent CHCl3 hydrogen bonded to exposed C=O of Aib located at the turn regions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
New hydrophobic, tetradentate nitrogen heterocyclic reagents, 6.6'-bis-(5,6-dialkyl- 1,2,4-triazin-3-yl)2,2'-bipyridines (BTBPs) have been synthesised. These reagents form complexes with lanthanides and crystal structures with 11 different lanthanides have been determined. The majority of the structures show the lanthanide to be 10-coordinate with stoichiometry [Ln(BTBP)(NO3)(3)] although Yb and Lu are 9-coordinate in complexes with stoichiometry [Ln(BTBP)(NO3)(2)(H2O)](NO3). In these complexes the BTBP ligands are tetradentate and planar with donor nitrogens mutually cis i.e. in the cis, cis, cis conformation. Crystal structures of two free molecules, namely C2-BTBP and CyMe4-BTBP have also been determined and show different conformations described as cis, trans, cis and trans, trans, trans respectively. A NMR titration between lanthanum nitrate and C5-BTBP showed that two different complexes are to be found in solution, namely [La(C5-BTBP)(2)](3+) and [La(C5-BTBP)(NO3)(3)]. The BTBPs dissolved in octanol were able to extract Am(III) and Eu(III) from 1 M nitric acid with large separation factors.
Resumo:
Novel 'tweezer-type' complexes that exploit the interactions between pi-electron-rich pyrenyl groups and pi-electron deficient diimide units have been designed and synthesised. The component molecules leading to complex formation were accessed readily from commercially available starting materials through short and efficient syntheses. Analysis of the resulting complexes, using the visible charge-transfer band, revealed association constants that increased sequentially from 130 to 11,000 M-1 as increasing numbers of pi-pi-stacking interactions were introduced into the systems. Computational modelling was used to analyse the structures of these complexes, revealing low-energy chain-folded conformations for both components, which readily allow close, multiple pi-pi-stacking and hydrogen bonding to be achieved. In this paper, we give details of our initial studies of these complexes and outline how their behaviour could provide a basis for designing self-healing polymer blends for use in adaptive coating systems. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The reported pseudopeptide 1 adopts a double turn molecular conformation consisting of an intramolecular 9-membered turn together with a water-mediated 11-atom turn and this pseudopeptide 1 self-assembles to form a water-mediated supramolecular helical structure with internal water molecules, which are aligned in a ID helical array. (c) 2006 Elsevier Ltd. All rights reserved.