953 resultados para Aberrant splicing
Resumo:
Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.
Resumo:
SUMMARYAs a result of evolution, humans are equipped with an intricate but very effective immune system with multiple defense mechanisms primarily providing protection from infections. This system comprises various cell types, including T-lymphocytes, which are able to recognize and directly kill infected cells. T-cells are not only able to recognize cells carrying foreign antigens, such as virus-infected cells, but also autologous cells. In autoimmune diseases, e.g. multiple sclerosis, T- cells attack autologous cells and cause the destruction of healthy tissue. To prevent aberrant immune reactions, but also to prevent damage caused by an overreacting immune response against foreign targets, there are multiple systems in place that attenuate T-cell responses.By contrast, anti-self immune responses may be highly welcome in malignant diseases. It has been demonstrated that activated T-cells are able to recognize and lyse tumor cells, and may even lead to successful cure of cancer patients. Through vaccination, and especially with the help of powerful adjuvants, frequencies of tumor-reactive T-cells can be augmented drastically. However, the efficacy of anti-tumor responses is diminished by the same checks and balances preventing the human body from harm induced by overly activated T-cells in infections.In the context of my thesis, we studied spontaneous and vaccination induced T-cell responses in melanoma patients. The aim of my studies was to identify situations of T-cell suppression, and pinpoint immune suppressive mechanisms triggered by malignant diseases. We applied recently developed techniques such as multiparameter flow cytometry and gene arrays, allowing the characterization of tumor-reactive T-cells directly ex vivo. In our project, we determined functional capabilities, protein expression, and gene expression profiles of small numbers of T- cells from metastatic tissue and blood obtained from healthy donors and melanoma patients. We found evidence that tumor-specific T-cells were functionally efficient effector cells in peripheral blood, but severely exhausted in metastatic tissue. Our molecular screening revealed the upregulation of multiple inhibitory receptors on tumor-specific T-cells, likely implied in T-cell exhaustion. Functional attenuation of tumor-specific T-cells via inhibitory receptors depended on the anatomical location and immune suppressive mechanisms in the tumor microenvironment, which appeared more important than self-tolerance and anergy mechanisms. Our data reveal novel potential targets for cancer therapy, and contribute to the understanding of cancer biology.RÉSUMÉAu cours de l'évolution, les êtres humains se sont vus doter d'un système immunitaire complexe mais très efficace, avec de multiples mécanismes de défense, principalement contre les infections. Ce système comprend différents types de cellules, dont les lymphocytes Τ qui sont capables de reconnaître et de tuer directement des cellules infectées. Les cellules Τ reconnaissent non seulement des cellules infectées par des virus, mais également des cellules autologues. Dans le cas de maladies auto-immunes, comme par exemple la sclérose en plaques, les cellules Τ s'attaquent à des cellules autologues, ce qui engendre la destruction des tissus sains. Il existe plusieurs systèmes de contrôle des réponses Τ afin de minimiser les réactions immunitaires aberrantes et d'empêcher les dégâts causés par une réponse immunitaire trop importante contre une cible étrangère.Dans le cas de maladies malignes en revanche, une réponse auto-immune peut être avantageuse. Il a été démontré que les lymphocytes Τ étaient également capables de reconnaître et de tuer des cellules tumorales, pouvant même mener à la guérison d'un patient cancéreux. La vaccination peut augmenter fortement la fréquence des cellules Τ réagissant contre une tumeur, particulièrement si elle est combinée avec des adjuvants puissants. Cependant, l'efficacité d'une réponse antitumorale est atténuée par ces mêmes mécanismes de contrôle qui protègent le corps humain des dégâts causés par des cellules Τ activées trop fortement pendant une infection.Dans le cadre de ma recherche de thèse, nous avons étudié les réponses Τ spontanées et induites par la vaccination dans des patients atteints du mélanome. Le but était d'identifier des conditions dans lesquelles les réponses des cellules Τ seraient atténuées, voire inhibées, et d'élucider les mécanismes de suppression immunitaire engendrés par le cancer. Par le biais de techniques nouvelles comprenant la cryométrie de flux et l'analyse globale de l'expression génique à partir d'un nombre minimal de cellules, il nous fut possible de caractériser des cellules Τ réactives contre des tumeurs directement ex vivo. Nous avons examiné les profiles d'expression de gènes et de protéines, ainsi que les capacités fonctionnelles des cellules Τ isolées à partir de tissus métastatiques et à partir du sang de patients. Nos résultats indiquent que les cellules Τ spécifiques aux antigènes tumoraux sont fonctionnelles dans le sang, mais qu'elles sont épuisées dans les tissus métastatiques. Nous avons découvert dans les cellules Τ antitumorales une augmentation de l'expression des récepteurs inhibiteurs probablement impliqués dans l'épuisement de ces lymphocytes T. Cette expression particulière de récepteurs inhibiteurs dépendrait donc de leur localisation anatomique et des mécanismes de suppression existant dans l'environnement immédiat de la tumeur. Nos données révèlent ainsi de nouvelles cibles potentielles pour l'immunothérapie du cancer et contribuent à la compréhension biologique du cancer.
Resumo:
IB1/JIP-1 is a scaffold protein that regulates the c-Jun NH(2)-terminal kinase (JNK) signaling pathway, which is activated by environmental stresses and/or by treatment with proinflammatory cytokines including IL-1beta and TNF-alpha. The JNKs play an essential role in many biological processes, including the maturation and differentiation of immune cells and the apoptosis of cell targets of the immune system. IB1 is expressed predominantly in brain and pancreatic beta-cells where it protects cells from proapoptotic programs. Recently, a mutation in the amino-terminus of IB1 was associated with diabetes. A novel isoform, IB2, was cloned and characterized. Overall, both IB1 and IB2 proteins share a very similar organization, with a JNK-binding domain, a Src homology 3 domain, a phosphotyrosine-interacting domain, and polyacidic and polyproline stretches located at similar positions. The IB2 gene (HGMW-approved symbol MAPK8IP2) maps to human chromosome 22q13 and contains 10 coding exons. Northern and RT-PCR analyses indicate that IB2 is expressed in brain and in pancreatic cells, including insulin-secreting cells. IB2 interacts with both JNK and the JNK-kinase MKK7. In addition, ectopic expression of the JNK-binding domain of IB2 decreases IL-1beta-induced pancreatic beta-cell death. These data establish IB2 as a novel scaffold protein that regulates the JNK signaling pathway in brain and pancreatic beta-cells and indicate that IB2 represents a novel candidate gene for diabetes.
Resumo:
The Wnt -Wingless (Wg) in Drosophila- signaling is an evolutionary conserved, fundamental signal transduction pathway in animals, having a crucial role in early developmental processes. In the adult animal the Wnt cascade is mainly shut off; aberrant activation leads to cancer. One physiological exception in the adult animal is the activation of Wnt signaling in the nervous system. In the present work, we investigated Wg signaling in the Drosophila neuromuscular junctions (NMJs). The fly NMJs closely resemble the glutamatergic synapses in the mammalian central nervous system and serves as a model system to investigate the mechanism of synapse formation and stability. We demonstrate that the trimeric G-protein Go has a fundamental role in the presynaptic cell in the NMJ. It is implicated in the presynaptic Wg pathway, acting downstream of the ligand Wg and its receptor Frizzled2 (Fz2). Furthermore, we prove that the presynaptic Wg-Fz2-Gαo pathway is essential for correct NMJ formation. The neuronal protein Ankyrin2 (Ank2) localizes to the NMJ and has so far been considered to be a static player in NMJ formation, linking the plasma membrane to the cytoskeleton. We identify Ank2 as a direct target of Gαo. The physical and genetic interaction of Gαo with Ank2 represents a novel branch of the presynaptic Wg pathway, regulating the microtubule cytoskeleton in NMJ formation, jointly with the previously established Futsch-dependent branch, which controls microtubule stability downstream of the kinase Sgg (the homolog of GSK3ß). We moreover demonstrate that the Gαo-Ankyrin interaction to regulate the cytoskeleton is conserved in mammalian neuronal cells. Our findings therefore provide a novel, universally valid regulation of the cytoskeleton in the nervous system. Aberrant inactivation of the neuronal Wnt pathway is believed to be involved in the pathogenesis of the Aß peptide in Alzheimer's disease (AD). We modeled AD in Drosophila by expressing Aß42 in the nervous system and in the eye. Neuronal expression drastically shortens the life span of the flies. We prove that this effect depends on the expression specifically in glutamatergic neurons. However, Aß42 does not induce any morphological changes in the NMJ; therefore this synapse is not suitable to study the mechanism of Aß42 induced neurotoxicity. We furthermore demonstrate that genetic activation of the Wnt pathway does not rescue the Aß42 induced phenotypes - in opposition to the dominating view in the field. These results advice caution when interpreting data on the potential interaction of Wnt signaling and AD in other models. -- La voie de signalisation Wnt (Wingless (Wg) chez la drosophile) est conservée dans l'évolution et fondamentale pour le développement des animaux. Cette signalisation est normalement inactive chez l'animal adulte; une activation anormale peut provoquer le cancer. Or, ceci n'est pas le cas dans le système nerveux des adultes. La présente thèse avait pour but d'analyser le rôle de la voie de signalisation Wingless dans la plaque motrice de Drosophila melanogaster. En effet, cette plaque ressemble fortement aux synapses glutaminergiques du système nerveux central des mammifères et procure ainsi un bon modèle pour l'étude des mécanismes impliqués dans la formation et la stabilisation des synapses. Nos résultats montrent que la protéine trimérique Go joue un rôle fondamental dans la fonction de la cellule présynaptique de la plaque motrice. Go est en effet impliqué dans la voie de signalisation Wg, opérant en aval du ligand Wg et de son récepteur Frizzled2. Nous avons pu démontrer que cette voie de signalisation Wg-Fz2-Gαo est essentielle pour le bon développement et le fonctionnement de la plaque motrice. Fait intéressant, nous avons montré que la protéine neuronale Ankyrin2 (Ank2), qui est connue pour jouer un rôle statique en liant la membrane plasmique au cytosquelette dans la plaque motrice, est une cible directe de Gαo. L'interaction physique et génétique entre Gαo et Ank2 constitue ainsi une bifurcation de la voie de signalisation présynaptique Wg. Cette voie régule le cytosquelette des microtubules en coopération avec la branche liée à la protéine Futsch. Cette protéine est l'homologue de la protéine liant les microtubules MAP1B des mammifères et contrôle la stabilité des microtubules opérant en aval de la kinase Sgg (l'homologue de GSK3ß). De plus, la régulation du cytosquelette par l'interaction entre Gαo et Ankyrin est conservée chez les mammifères. Dans leur ensemble, nos résultats ont permis d'identifier un nouveau mode de régulation du cytosquelette dans le système nerveux, probablement valable de manière universelle. La voie de signalisation Wnt est soupçonnée d'être impliquée dans la toxicité provoquée par le peptide Aß dans le cadre de la maladie d'Alzheimer. Nous avons tenté de modéliser la maladie chez la drosophile en exprimant Aß42 spécifiquement dans le cerveau. Cette expérience a montré que l'expression neuronale d'Aß42 réduit la durée de vie des mouches de manière significative par un mécanisme impliquant les cellules glutamatergiques. Par contre, aucune modification morphologique n'est provoquée par Aß42 dans les plaques motrices glutamatergiques. Ces résultats montrent que ce modèle de Drosophile n'est pas adéquat pour l'étude de la maladie d'Alzheimer. De plus, l'activation génétique de la voie de signalisation Wg n'a pas réussi à restaurer les phénotypes de survie ou ceux des yeux causés par Aß42. Ces résultats indiquent que l'implication de la voie de signalisation Wg dans la maladie d'Alzheimer doit être considérée avec prudence.
Resumo:
Rapid production of IL-4 by Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) T cells expressing the V beta 4-V alpha 8 TCR chains has been shown to drive aberrant Th2 cell development and susceptibility to Leishmania major in BALB/c mice. In contrast, mice from resistant strains fail to express this early IL-4 response. However, administration of either anti-IL-12 or -IFN-gamma at the initiation of infection allows the expression of this early IL-4 response in resistant mice. In this work we show that Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells also expressing the V beta 4-V alpha 8 TCR chains are the source of the early IL-4 response to L. major in resistant mice given anti-IL-12 or -IFN-gamma Abs only at the onset of infection. Strikingly, these cells were found to be required for the reversal of the natural resistance of C57BL/6 mice following a single administration of anti-IL-12 or -IFN-gamma Abs. Together these results suggest that a deficiency in mechanisms capable of down-regulating the early IL-4 response to L. major contributes to the exquisite susceptibility of BALB/c mice to L. major.
Resumo:
The Lpin1 gene encodes the phosphatidate phosphatase (PAP1) enzyme Lipin 1, which plays a critical role in lipid metabolism. In this study we describe the identification and characterization of a rat with a mutated Lpin1 gene (Lpin11Hubr ), generated by N-ethyl-N-nitrosourea mutagenesis. Lpin11Hubr rats are characterized by hindlimb paralysis that is detectable from the second postnatal week. Sequencing of Lpin1 identified a missense mutation in the 5'-end splice site of exon 18 resulting in mis-splicing, a reading frame shift and a premature stop codon. As this mutation does not induce nonsense-mediated decay, it allows the production of a truncated Lipin 1 protein lacking PAP1 activity. As a consequence, Lpin11Hubr rats develop hypomyelination rather than the pronounced demyelination defect characteristic of Lpin1fld/fld mice, which carry a null allele for Lpin1. Furthermore, histological and molecular analyses revealed that this lesion improve in older Lpin11Hubr rats as compared to young Lpin11Hubr rats and Lpin1fld/fld mice. The observed differences between the murine Lpin1fld/fld mutant, with a complete loss of Lipin 1 function, and the Lpin1Hubr rat, with a truncated PAP1 activitydeficient form of Lipin 1, provide additional evidence for suggested non-enzymatic Lipin1 function residing outside of its PAP1 domain. While we are cautious in making a direct parallel between the presented rodent model and human disease, our data may provide new insight into pathogenicity of recently identified human Lpin1 mutations. *These authors contributed equally.
Resumo:
Glioblastomas are the most malignant gliomas with median survival times of only 15 months despite modern therapies. All standard treatments are palliative. Pathogenetic factors are diverse, hence, stratified treatment plans are warranted considering the molecular heterogeneity among these tumors. However, most patients are treated with "one fits all" standard therapies, many of them with minor response and major toxicities. The integration of clinical and molecular information, now becoming available using new tools such as gene arrays, proteomics, and molecular imaging, will take us to an era where more targeted and effective treatments may be implemented. A first step towards the design of such therapies is the identification of relevant molecular mechanisms driving the aggressive biological behavior of glioblastoma. The accumulation of diverse aberrations in regulatory processes enables tumor cells to bypass the effects of most classical therapies available. Molecular alterations underlying such mechanisms comprise aberrations on the genetic level, such as point mutations of distinct genes, or amplifications and deletions, while others result from epigenetic modifications such as aberrant methylation of CpG islands in the regulatory sequence of genes. Epigenetic silencing of the MGMT gene encoding a DNA repair enzyme was recently found to be of predictive value in a randomized clinical trial for newly diagnosed glioblastoma testing the addition of the alkylating agent temozolomide to standard radiotherapy. Determination of the methylation status of the MGMT promoter may become the first molecular diagnostic tool to identify patients most likely to respond that will allow individually tailored therapy in glioblastoma. To date, the test for the MGMT-methylation status is the only tool available that may direct the choice for alkylating agents in glioblastoma patients, but many others may hopefully become part of an arsenal to stratify patients to respective targeted therapies within the next years.
Resumo:
Developmentally regulated mechanisms involving alternative RNA splicing and/or polyadenylation, as well as transcription termination, are implicated in controlling the levels of secreted mu (mu s), membrane mu (mu m) and delta immunoglobulin (Ig) heavy chain mRNAs during B cell differentiation (mu gene encodes the mu heavy chain). Using expression vectors constructed with genomic DNA segments composed of the mu m polyadenylation signal region, we analyzed poly(A) site utilization and termination of transcription in stably transfected myeloma cells and in murine fibroblast L cells. We found that the gene segment containing the mu m poly(A) signals, along with 536 bp of downstream flanking sequence, acted as a transcription terminator in both myeloma cells and L cell fibroblasts. Neither a 141-bp DNA fragment (which directed efficient polyadenylation at the mu m site), nor the 536-bp flanking nucleotide sequence alone, were sufficient to obtain a similar regulation. This shows that the mu m poly(A) region plays a central role in controlling developmentally regulated transcription termination by blocking downstream delta gene expression. Because this gene segment exhibited the same RNA processing and termination activities in fibroblasts, it appears that these processes are not tissue-specific.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Resumo:
The human PFKFB3 is composed of 19 exons spanning genomic region about 90,6 Kb (GenBank). Alternative splicing variants have been reported. The main variants corresponding to mRNAs of 4453 bp and 4224 bp for the variant 1 u-PFK2 (NM_004566.3) and variant 2 i-PFK2 (NM_001145443.1), respectively...
Resumo:
BACKGROUND: The purpose of this study was to explore the potential use of image analysis on tissue sections preparation as a predictive marker of early malignant changes during squamous cell (SC) carcinogenesis in the esophagus. Results of DNA ploidy quantification on formalin-fixed, paraffin-embedded tissue using two different techniques were compared: imprint-cytospin and 6 microm thick tissue sections preparation. METHODS: This retrospective study included 26 surgical specimens of squamous cell carcinoma (SCC) from patients who underwent surgery alone at the Department of Surgery in CHUV Hospital in Lausanne between January 1993 and December 2000. We analyzed 53 samples of healthy tissue, 43 tumors and 7 lymph node metastases. RESULTS: Diploid DNA histogram patterns were observed in all histologically healthy tissues, either distant or proximal to the lesion. Aneuploidy was observed in 34 (79%) of 43 carcinomas, namely 24 (75%) of 32 early squamous cell carcinomas and 10 (91%) of 11 advanced carcinomas. DNA content was similar in the different tumor stages, whether patients presented with single or multiple synchronous tumors. All lymph node metastases had similar DNA content as their primary tumor. CONCLUSIONS: Early malignant changes in the esophagus are associated with alteration in DNA content, and aneuploidy tends to correlate with progression of invasive SCC. A very good correlation between imprint-cytospin and tissue section analysis was observed. Although each method used here showed advantages and disadvantages; tissue sections preparation provided useful information on aberrant cell-cycle regulation and helped select the optimal treatment for the individual patient along with consideration of other clinical parameters.
Resumo:
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches
Resumo:
OBJECTIVE: To emphasize that complex regional pain syndrome (CRPS), a disabling disorder with the implication of aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity, might be treated with a high dose of intravenous immunoglobulin infusions (IVIG). METHODS: We describe a patient who presented with CRPS in the acute phase of the disease. RESULTS: The CRPS developed secondary to sciatic compression in a young patient and was treated within 10 days by high-dose IVIG (2 g/kg). It resolved completely within days after infusions. DISCUSSION: This observational study emphasizes that high-dose IVIG may be a treatment option in the acute phase of CRPS.
Resumo:
One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or ‘‘moonlighting’’, proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.