966 resultados para AS160 PHOSPHORYLATION
Resumo:
Phenylalanine hydroxylase is regulated in a complex manner, including activation by phosphorylation. It is normally found as an equilibrium of dimeric and tetrameric species, with the tetramer thought to be the active form. We converted the protein to the dimeric form by deleting the C-terminal 24 residues and show that the truncated protein remains active and regulated by phosphorylation. This indicates that changes in the tetrameric quaternary structure of phenylalanine hydroxylase are not required for enzyme activation. Truncation also facilitates crystallization of both phosphorylated and dephosphorylated forms of the enzyme.
Resumo:
Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation(1). Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members af the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters(1-4). Less is known of how cytokine signal transduction is switched off. We have cloned a complementary DNA encoding a protein SOCS-1, containing an SH2-domain, by its ability to inhibit the macrophage differentiation of M1 cells in response to interleukin-6. Expression of SOCS-1 inhibited both interleukin-6-induced receptor phosphorylation and STAT activation. We have also cloned two-relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS (ref. 5) form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction.
Resumo:
The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
The Egr proteins, Egr-1, Egr-2, Egr-3 and Egr-4, are closely related members of a subclass of immediate early gene-encoded, inducible transcription factors. They share a highly homologous DNA-binding domain which recognises an identical DNA response element. In addition, they have several less-well conserved structural features in common. As immediate early proteins, the Egr transcription factors are rapidly induced by diverse extracellular stimuli within the nervous system in a discretely controlled manner. The basal expression of the Egr proteins in the developing and adult rat brain and the induction of Egr proteins by neurotransmitter analogue stimulation, physiological mimetic and brain injury paradigms is reviewed. We review evidence indicating that Egr proteins are subject to tight differential control through diverse mechanisms at several levels of regulation. These include transcriptional, translational and posttranslational (including glycosylation, phosphorylation and redox) mechanisms and protein-protein interaction. Ultimately the differentially co-ordinated Egr response may lead to discrete effects on target gene expression. Some of the known target genes of Egr proteins and functions of the Egr proteins in different cell types are also highlighted. Future directions for research into the control and function of the different Egr proteins are also explored. (C) 1997 Elsevier Science Ltd.
Resumo:
Malignant melanoma is one of the most lethal cancers. Nowadays, several anti-melanoma therapies have been employed. However, the poor prognosis and/or the increased toxicity of those treatments clearly demonstrate the requirement of searching for new drugs or novel combined chemotherapeutic protocols, contemplating both effectiveness and low toxicity. Guanosine (Guo) has been used in combination with acriflavina to potentiate the latter`s antitumor activity, through still unknown mechanisms. Here, we show that Guo induces B16F10 melanoma cell differentiation, attested by growth arrest, dendrite-like outgrowth and increased melanogenesis, and also reduced motility. A sustained ERK 1/2 phosphorylation was observed after Guo treatment and ERK inhibition led to blockage of dendritogenesis. Intracellular cyclic AMP was not involved in ERK activation, since its levels remained unchanged. Protein kinase C (PKC), in contrast to phospholipase C (PLC), inhibition completely prevented ERK activation. While the classical melanoma differentiation agent forskolin activates cAMP-PKA-Raf-MEK-ERK pathway in B16F10 cells, here we suggest that a cAMP-independent, PKC-ERK axis is involved in Guo-induced B16F10 differentiation. Altogether, our results show that Guo acts as a differentiating agent, with cytostatic rather than cytotoxic properties, leading to a decreased melanoma malignancy. Thus, we propose that Guo may be envisaged in combination with lower doses of conventional anti-melanoma drugs, in an attempt to prevent or diminish their adverse effects. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
SUBPOPULATIONS of olfactory receptor neurons, which are dispersed throughout the olfactory neuroepithelium, express specific cell surface carbohydrates and project to discrete regions of the olfactory bulb. Cell surface carbohydrates such as N-acetyl-lactosamine have been postulated to mediate sorting and selective fasciculation of discrete axon subpopulations during development of the olfactory pathway. Substrate-bound N-acetyl-lactosamine promotes neurite outgrowth by both clonal olfactory receptor neuron cell lines and olfactory receptor neurons in vitro, indicating that cell surface carbohydrates may be ligands for receptor-mediated stimulation of axon growth in vivo. In the present study, the role of transmembrane signaling in N-acetyl-lactosamine-stimulated neurite outgrowth was examined in the clonal olfactory neuron cell line 4.4.2. Substrate-bound N-acetyl-lactosamine stimulated neurite outgrowth which was specifically inhibited by antagonists to N- and L-type calcium channels and to tyrosine kinase phosphorylation. These results indicate that N-acetyl-lactosamine can evoke transmembrane receptor-mediated responses capable of influencing neurite outgrowth.
Resumo:
Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Both systemic and organ-specific autoimmune diseases are major manifestations of IgA deficiency (IgAD), the most common primary immunodeficiency. In addition, to discuss the clinical findings of IgAD patients, we proposed a hypothesis to explain the high association with autoimmune phenomena. Based on observations, interactions of monomeric IgA with Fc alpha RI result in a partial phosphorylation of FcR gamma-associated FcaRI, notably in the immunoreceptor tyrosine-based activation motif (ITAM) inducing the recruitment of the SHP-1 tyrosine phosphatase. This leads to deactivation of several activating pathways of the immune system including immunoreceptors that bear ITAM motif and ITAM-independent receptors. Consequently, inflammatory reactions and auto-immune process would be prevented.
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
Background: Steroidogenic factor 1 (SF-1) is a key determinant of endocrine development and function of adrenal cortex. SF-1 overexpression and gene amplification were previously demonstrated in a small group of pediatric adrenocortical tumors. Objective: Our objective was to determine the frequency of SF-1 protein expression and gene amplification in a large cohort of pediatric and adult adrenocortical tumors. Patients: SF-1 protein expression was assessed in a cohort of 103 adrenocortical tumors from 36 children and 67 adults, whereas gene amplification was studied in 38 adrenocortical tumors ( 17 from children). Methods: Tissue microarray, multiplex ligation-dependent probe amplification, and quantitative real-time PCR were used. Results: Astrong nuclear SF-1 expression was detected by tissue microarray in 56% (20 of 36) and 19% (13 of 67) of the pediatric and adult adrenocortical tumors, respectively (P = 0.0004). Increased SF-1 copy number was identified in 47% (eight of 17) and 10% (two of 21) of the pediatric and adult adrenocortical tumors, respectively (P = 0.02). All adrenocortical tumors with SF-1 gene amplification showed a strong SF-1 staining, whereas most of the tumors (61%) without SF-1 amplification displayed a weak or negative staining (P = 0.0008). Interestingly, a strong SF-1 staining was identified in five (29%) pediatric adrenocortical tumors without SF-1 amplification. The frequency of SF-1 overexpression and gene amplification was similar in adrenocortical adenomas and carcinomas. Conclusion: We demonstrated a higher frequency of SF-1 overexpression and gene amplification in pediatric than in adult adrenocortical tumors, suggesting an important role of SF-1 in pediatric adrenocortical tumorigenesis. (J Clin Endocrinol Metab 95: 1458-1462, 2010)
Resumo:
Crajoinas RO, Lessa LMA, Carraro-Lacroix LR, Davel APC, Pacheco BPM, Rossoni LV, Malnic G, Girardi ACC. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young prehypertensive SHR. Am J Physiol Renal Physiol 299:F872-F881, 2010. First published July 14, 2010; doi:10.1152/ajprenal.00654.2009.-Abnormalities in renal proximal tubular (PT) sodium transport play an important role in the pathophysiology of essential hypertension. The Na(+)/H(+) exchanger isoform 3 (NHE3) represents the major route for sodium entry across the apical membrane of renal PT cells. We therefore aimed to assess in vivo NHE3 transport activity and to define the molecular mechanisms underlying NHE3 regulation before and after development of hypertension in the spontaneously hypertensive rat (SHR). NHE3 function was measured as the rate of bicarbonate reabsorption by means of in vivo stationary microperfusion in PT from young prehypertensive SHR (Y-SHR; 5-wk-old), adult SHR (A-SHR; 14-wk-old), and age-matched Wistar Kyoto (WKY) rats. We found that NHE3-mediated PT bicarbonate reabsorption was reduced with age in the SHR (1.08 +/- 0.10 vs. 0.41 +/- 0.04 nmol/cm(2)xs), while it was increased in the transition from youth to adulthood in the WKY rat (0.59 +/- 0.05 vs. 1.26 +/- 0.11 nmol/cm(2)xs). Higher NHE3 activity in the Y-SHR compared with A-SHR was associated with a predominant microvilli confinement and a lower ratio of phosphorylated NHE3 at serine-552 to total NHE3 (P-NHE3/total). After development of hypertension, P-NHE3/total increased and NHE3 was retracted out of the microvillar microdomain along with the regulator dipeptidyl peptidase IV (DPPIV). Collectively, our data suggest that the PT is playing a role in adapting to the hypertension in the SHR. The molecular mechanisms of this adaptation possibly include an increase of P-NHE3/total and a redistribution of the NHE3-DPPIV complex from the body to the base of the PT microvilli, both predicted to decrease sodium reabsorption.
Resumo:
The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.
Resumo:
Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301: F355-F363, 2011. First published May 18, 2011; doi: 10.1152/ajprenal.00729.2010.-Glucagon-like peptide-1 (GLP-1) is a gut incretin hormone considered a promising therapeutic agent for type 2 diabetes because it stimulates beta cell proliferation and insulin secretion in a glucose-dependent manner. Cumulative evidence supports a role for GLP-1 in modulating renal function; however, the mechanisms by which GLP-1 induces diuresis and natriuresis have not been completely established. This study aimed to define the cellular and molecular mechanisms mediating the renal effects of GLP-1. GLP-1 (1 mu g.kg(-1).min(-1)) was intravenously administered in rats for the period of 60 min. GLP-1-infused rats displayed increased urine flow, fractional excretion of sodium, potassium, and bicarbonate compared with those rats that received vehicle (1% BSA/saline). GLP-1-induced diuresis and natriuresis were also accompanied by increases in renal plasma flow and glomerular filtration rate. Real-time RT-PCR in microdissected rat nephron segments revealed that GLP-1 receptor-mRNA expression was restricted to glomerulus and proximal convoluted tubule. In rat renal proximal tubule, GLP-1 significantly reduced Na(+)/H(+) exchanger isoform 3 (NHE3)-mediated bicarbonate reabsorption via a protein kinase A (PKA)-dependent mechanism. Reduced proximal tubular bicarbonate flux rate was associated with a significant increase of NHE3 phosphorylation at the PKA consensus sites in microvillus membrane vesicles. Taken together, these data suggest that GLP-1 has diuretic and natriuretic effects that are mediated by changes in renal hemodynamics and by downregulation of NHE3 activity in the renal proximal tubule. Moreover, our findings support the view that GLP-1-based agents may have a potential therapeutic use not only as antidiabetic drugs but also in hypertension and other disorders of sodium retention.
Resumo:
In organ transplantation, the immunosuppression withdrawal leads, in most cases, to rejection. Nonetheless, a special group of patients maintain stable graft function after complete withdrawal of immunosuppression, achieving a state called ""operational tolerance."" The study of such patients may be important to understand the mechanisms involved in human transplantation tolerance. We compared the profile of CD4(+)CD25(+)Foxp3(+) T cells and the signaling pathways IL-6/STAT3 (signal transducers and activators of transcription) and IL-4/STAT6 in peripheral blood mononuclear cells of four kidney transplant groups: (i) operational tolerance (OT), (ii) chronic allograft nephropathy (CR), (iii) stable graft function under standard immunosuppression (Sta), (iv) stable graft function under low immunosuppression, and (v) healthy individuals. Both CR and Sta displayed lower numbers and percentages of CD4(+)CD25(+)Foxp3(+) T cells compared with all other groups (p < 0.05). The OT patients displayed a reduced activation of the IL-4/STAT6 pathway in monocytes, compared with all other groups (p < 0.05). The lower numbers of CD4(+)CD25(+)Foxp3(+) T cells observed in CR individuals may be a feature of chronic allograft nephropathy. The differential OT signaling profile, with reduced phosphorylation of STAT6, in monocytes` region, suggests that some altered function of STAT6 signaling may be important for the operational tolerance state. Crown copyright (C) 2010 Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics. All rights reserved.