992 resultados para ART regulation
Resumo:
Social audit is one of those important mechanisms for strengthening NGOs’ accountability to poor communities (as NGOs’ key beneficiaries). However, conducting social audits within the NGO sector often rests on the individual interests and priorities of donors or NGOs themselves, effectively resulting in self-selection bias, and limiting the effectiveness and usefulness of social audits as a control and evaluation mechanism. The purpose of this chapter is to identify the prevalence, scale, and scope of social audits within the NGO sector, particularly NGOs engaging in microenterprise development programs. Accordingly, this study examined 20 NGOs operating in two countries - Bangladesh and Indonesia. Data were collected from publicly available sources and in-depth interviews with senior executives of the participating NGOs. Further, 10 interviews were conducted with a small sample of beneficiaries (individuals or groups from four of the participating NGOs) in order to gain an understanding of beneficiaries’ perceptions of the NGOs’ social audit mechanism. The findings reveal a range of approaches to social audit among NGOs, as well as the usefulness and limitations of this mechanism for strengthening NGO accountability, particularly to beneficiaries. Findings highlight that within the NGOs investigated the conduct of social audits remained voluntary and was strongly dependant on donors’ requirements. As social audit regulation within the NGO sector is minimal, the findings provide regulators with valuable guidance for better understanding the value of social audit as a mechanism to strengthen accountability of the NGO sector, particularly accountability to beneficiaries.
Resumo:
Brisbane-based artist and Founding Co-Director of LEVEL artist run initiative Courtney Coombs discusses feminist activist art practice in Australia. Recent discussions both in the art world and beyond have increased the profile and demystified the notion of feminism in the twenty-first century, and the term has once again become integrated into mainstream discussion internationally and in Australia. Now that pop music star Taylor Swift has declared herself a feminist, you could be persuaded that the 'f' word has finally become socially acceptable. However, while many artists have adopted the feminist label across the country, it often feels like feminism has become a lifestyle choice rather than a political one. When the badge is so readily worn by many, society can be fooled into thinking that there is no more work to be done. With the 'f' word once again acceptable while the 'p' word (patriarchy) remains so pass , how are artists responding to the changed conditions but continued imposition of what bell hooks has described as the 'imperialist white supremacist capitalist patriarchy'?
Resumo:
Earlier studies from this lebordory have shown thet adult male bonnet monkeys exhibit nychthemrel rhythmicity la the secretion of serum 'T' the levele reehlng peek by 22OOhr. Of the gonedotropine cnelyeed only serum PRL showed a concommitent increme with T(Biol.of Reprod. 24,814, 1981). In the present study mMinietretion of l rgobromocryptin (EBC) either by i.v.route(2mg)or by naeel l pr~(100~)reeulted in blockade of nocturnal increase of both PRL end T(Controle T-18.6ng/ml: PRL 130=29ng/ml: EBC treated T-2.2&1.2ng/ml; PRL n.d.to 15nng/ml). Adminietretion of N oPRL could not reverse the effect of EBC. Although, increaeed serum PRL induced by injection of Chlorprommine did not result in increase in serum 'T' during the dey time, the nocturnel 'T' surge could not be obeeerved. EBC treeted monkeys, however, showed normal testosterone response to exogenous hCG. These IeSUlte a0 SwgeStive of high levels of PRL me&in6 reeponeiveneee of testes to tonic levels of serum IX. (Aided by grant8 from ICMR, Kew Delhi, WHO, Geneva eld FPF, India).
Resumo:
A cDNA clone for the Ya subunit of glutathione transferase from rat liver was constructed in E.coli. The clone hybridized to Ya and Yc subunit messenger RNAs. On the basis of experiments involving cell-free translation and hybridization to the cloned probe, it was shown that prototype inducers of cytochrome P-450 such as phenobarbitone and 3-methylcholanthrene as well as inhibitors such as CoCl2 and 3-amino-l,2,4-triazole enhanced the glutathione transferase (Ya+Yc) messenger RNA contents in rat liver. A comparative study with the induction of cytochrome P-450 (b+e) by phenobarbitone revealed that the drug manifested a striking increase in the nuclear pre-messenger RNAs for the cytochrome at 12 hr, but did not significantly affect the same in the case of glutathione transferase (Ya+Yc). 3-Amino-l, 2,4-tnazole and CoCl- blocked the phenobarbitone mediated increase in cytochrome P-450 (b+e) nuclear pre-messenger RNAs. These compounds did not significantly affect the glutathione transferase (Ya+Yc) nuclear pre-messenger RNA levels. The polysomal, poly (A)- containing messenger RNAs for cytochrome P-450 (b+e) increased by 12–15 fold after phenobarbitone administration, reached a maximum around 16hr and then decreased sharply. In comparison, the increase in the case of glutathione transferase (Ya+Yc) mesenger RNAs was sluggish and steady and a value of 3–4 fold was reached around 24 hr. Run-off transcription rates for cytochrome P-450 (b+e) increased by nearly 15 fold in 4 hr after phenobarbitone administration, whereas the increase for glutathione transferase (Ya+Yc) was only 2.0 fold. At 12 hr after the drug administration, the glutathione transferase (Ya+Yc) transcription rates were near normal. Administration of 3-amino-l,2,4-triazole and CoCl2 blocked the phenobarbitone-mediated increase in the transcription of cytochrome P-450 (b+e) messenger RNAs. These compounds at best had only marginal effects on the transcription of glutathione transferase (Ya+Yc) messenger RNAs. The half-life of cytochrome P-450 (b+e) messenger RNA was estimated to be 3–4 hr, whereas that for glutathione transferase (Ya+Yc) was found to be 8-9 hr. Administration of phenobarbitone enhanced the half-life of glutathione transferase (Ya+Yc) messenger RNA by nearly two fold. It is suggested that while transcription activation may play a primary role in the induction of cytochrome P-450 (b+e), the induction of glutathione transferase (Ya+Yc) may essentially involve stabilization of the messenger RNAs.
Resumo:
Ursula Schlosstein born Gottschalk in her nursery school, Allens Lane Art Center.
Resumo:
Ursula Schlosstein born Gottschalk in her nursery school, Allens Lane Art Center.
Resumo:
Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.