989 resultados para AMPLIFIED FRAGMENT LENGTH POLYMORPHISM
Resumo:
Restriction fragment length polymorphism (RFLP) analysis is an economic and fast technique for molecular typing but has the drawback of difficulties in accurately sizing DNA fragments and comparing banding patterns on agarose gels. We aimed to improve RFLP for typing of the important human pathogen Streptococcus pneumoniae and to compare the results with the commonly used typing techniques of pulsed-field gel electrophoresis and multilocus sequence typing. We designed primers to amplify a noncoding region adjacent to the pneumolysin gene. The PCR product was digested separately with six restriction endonucleases, and the DNA fragments were analyzed using an Agilent 2100 bioanalyzer for accurate sizing. The combined RFLP results for all enzymes allowed us to assign each of the 47 clinical isolates of S. pneumoniae tested to one of 33 RFLP types. RFLP analyzed using the bioanalyzer allowed discrimination between strains similar to that obtained by the more commonly used techniques of pulsed-field gel electrophoresis, which discriminated between 34 types, and multilocus sequence typing, which discriminated between 35 types, but more quickly and with less expense. RFLP of a noncoding region using the Agilent 2100 bioanalyzer could be a useful addition to the molecular typing techniques in current use for S. pneumoniae, especially as a first screen of a local population.
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
Colonization with more than one distinct strain of the same species, also termed cocolonization, is a prerequisite for horizontal gene transfer between pneumococcal strains that may lead to change of the capsular serotype. Capsule switch has become an important issue since the introduction of conjugated pneumococcal polysaccharide vaccines. There is, however, a lack of techniques to detect multiple colonization by S. pneumoniae strains directly in nasopharyngeal samples. Two hundred eighty-seven nasopharyngeal swabs collected during the prevaccine era within a nationwide surveillance program were analyzed by a novel technique for the detection of cocolonization, based on PCR amplification of a noncoding region adjacent to the pneumolysin gene (plyNCR) and restriction fragment length polymorphism (RFLP) analysis. The numbers of strains and their relative abundance in cocolonized samples were determined by terminal RFLP. The pneumococcal carriage rate found by PCR was 51.6%, compared to 40.0% found by culture. Cocolonization was present in 9.5% (10/105) of samples, most (9/10) of which contained two strains in a ratio of between 1:1 and 17:1. Five of the 10 cocolonized samples showed combinations of vaccine types only (n = 2) or combinations of nonvaccine types only (n = 3). Carriers of multiple pneumococcal strains had received recent antibiotic treatment more often than those colonized with a single strain (33% versus 9%, P = 0.025). This new technique allows for the rapid and economical study of pneumococcal cocolonization in nasopharyngeal swabs. It will be valuable for the surveillance of S. pneumoniae epidemiology under vaccine selection pressure.
Resumo:
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.
Resumo:
BACKGROUND The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. RESULTS By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while 'atypical' A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. CONCLUSIONS HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
Resumo:
The primary objective of this study has been to investigate the effects at the molecular level of trisomy of mouse chromosome 7 in chemically induced skin tumors. It was previously proposed that the initiation event in the mouse skin carcinogenesis model is a heterozygous mutation of the Ha-ras-1 gene, mapped to chromosome 7. Previous studies in this laboratory identified trisomy 7 as one of the primary nonrandom cytogenetic abnormalities found in the majority of severely dysplastic papillomas and squamous cell carcinomas induced in SENCAR mice by an initiation-promotion protocol. Therefore, the first hypothesis tested was that trisomy 7 occurs by specific duplication of the chromosome carrying a mutated Ha-ras-1 allele. Results of a quantitative analysis of normal/mutated allelic ratios of the Ha-ras-1 gene confirmed this hypothesis, showing that most of the tumors exhibited overrepresentation of the mutated allele in the form of 1/2, 0/3, and 0/2 (normal/mutated) ratios. In addition, histopathological analysis of the tumors showed an apparent association between the degree of malignancy and the dosage of the mutated Ha-ras-1 allele. To determine the mechanism for loss of the normal Ha-ras-1 allele, found in 30% of the tumors, a comparison of constitutional and tumor genotypes was performed at different informative loci of chromosome 7. By combining Southern blot and polymerase chain reaction fragment length polymorphism analyses of DNAs extracted from squamous cell carcinomas, complete loss of heterozygosity was detected in 15 of 20 tumors at the Hbb locus, and in 5 of 5 tumors at the int-2 locus, both distal to Ha-ras-1. In addition, polymerase chain reaction analysis of DNA extracted from papillomas indicated that loss of heterozygosity occurs in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion, suggesting that this event may be associated to the acquisition of the malignant phenotype. Allelic dosage analysis of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1, indicated that loss of heterozygosity on mouse chromosome 7 occurs by a mitotic recombination mechanism. Overall, these findings suggest the presence of a putative tumor suppressor locus on the 7F1-ter region of mouse chromosome 7. Thus, loss of function by homozygosis at this putative suppressor locus may complement activation of the Ha-ras-1 gene during tumor progression, and might be associated with the malignant conversion stage of mouse skin carcinogenesis. ^
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
BACKGROUND/AIM To investigate the underlying pathomechanism in a 33-year-old female Caucasian patient presenting with chronic progressive external ophthalmoplegia (CPEO) plus symptoms. METHODS Histochemical analysis of skeletal muscle and biochemical measurements of individual oxidative phosphorylation (OXPHOS) complexes. Genetic analysis of mitochondrial DNA in various tissues with subsequent investigation of single muscle fibres for correlation of mutational load. RESULTS The patient's skeletal muscle showed 20% of cytochrome c oxidase-negative fibres and 8% ragged-red fibres. Genetic analysis of the mitochondrial DNA revealed a novel point mutation in the mitochondrial tRNA(Ile) (MTTI) gene at position m.4282G>A. The heteroplasmy was determined in blood, buccal cells and muscle by restriction fragment length polymorphism (RFLP) combined with a last fluorescent cycle. The total mutational load was 38% in skeletal muscle, but was not detectable in blood or buccal cells of the patient. The phenotype segregated with the mutational load as determined by analysis of single cytochrome c oxidase-negative/positive fibres by laser capture microdissection and subsequent LFC-RFLP. CONCLUSIONS We describe a novel MTTI transition mutation at nucleotide position m.4282G>A associated with a CPEO plus phenotype. The novel variant at position m.4282G>A disrupts the middle bond of the D-stem of the tRNA(Ile) and is highly conserved. The conservation and phenotype-genotype segregation strongly suggest pathogenicity and is in good agreement with the MTTI gene being frequently associated with CPEO. This novel variant broadens the spectrum of MTTI mutations causing CPEO.
Resumo:
BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches.
Resumo:
The number of immunoglobulin G constant heavy chain genes (cgamma genes) varies broadly among mammalian species, reflecting structural and functional differences between expressed immunoglobulin G (IgG) isotypes and allotypes. Up to now equine IgG isotypes have been defined only at the biochemical and serological level. It is still not clear how many IgG isotypes exist in horses and whether there are any allotypes. Here, we describe the isolation and characterisation of equine cgamma genes. An equine genomic lambda phage library was screened with a human cgamma4 probe. Cross-hybridising equine cgamma sequences were cloned twice and characterised by restriction mapping with the human cgamma4 and a murine sgamma1 probe. Genomic equine DNA probes for both, cgamma genes and corresponding switch regions (sgamma), were isolated and used for a more detailed BamHI restriction analysis, comparing genomic DNA of various horses. This analysis reveals the existence of at least five, or probably six cgamma genes in the equine haploid genome. Beside the porcine system, this is the highest number of cgamma genes described for any mammalian species. Moreover, for two of these cgamma genes, BamHI restriction fragment length polymorphism became evident.
Resumo:
Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.
Resumo:
The overall purpose of this study was to assess the relationship between the promoter region polymorphism (-2607 1G/2G) of matrix metalloproteinase-1 (MMP-1) polymorphism and outcome in brain tumor patients diagnosed with a primary brain tumor between 1994 and 2000 at The University of Texas M. D. Anderson Cancer Center. The MMP-1 polymorphism was genotyped for all brain tumor patients who participated in the Family Brain Tumor Study and for whom blood samples were available. Relevant covariates were abstracted from medical records for all cases from the original protocol, including information on demographics, tumor histology, therapy and outcome was obtained. The hypothesis was that brain tumor patients with the 2G allele have a poorer prognosis and shorter survival than brain tumor patients with the 1G allele. ^ Experimental Design: Genetic variants for the MMP-1 enzyme were determined by a polymerase chain reaction-restriction fragment length polymorphism assay. Comparison was made between the overall survival for cases with the 2G polymorphism and overall survival for cases with the 1G polymorphism using multivariable Cox Proportional-Hazard analysis, controlling for age, sex, Karnofsky Performance Scale (KPS), extent of surgery, tumor histology and treatment received. Kaplan-Meier and Cox Proportional-Hazard analyses were utilized to assess if the MMP-1 polymorphisms were related to overall survival. Results: Overall survival was not statistically significantly different between the 2G allele brain tumor patients and the 1G allele patients and there was no statistically significant difference between tumor types. ^ Conclusions: No association was found between MMP-1 polymorphisms and survival in patients with malignant gliomas. ^
Resumo:
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (>99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.
Resumo:
We document differences in shell damage and shell thickness in a bivalve mollusc (Laternula elliptica) from seven sites around Antarctica with differing exposures to ice movement. These range from 60% of the sea bed impacted by ice per year (Hangar Cove, Antarctic Peninsula) to those protected by virtually permanent sea ice cover (McMurdo Sound). Patterns of shell damage consistent with blunt force trauma were observed in populations where ice scour frequently occurs; damage repair frequencies and the thickness of shells correlated positively with the frequency of iceberg scour at the different sites with the highest repair rates and thicker shells at Hangar Cove (74.2% of animals damaged) compared to the other less impacted sites (less than 10% at McMurdo Sound). Genetic analysis of population structure using Amplified Fragment Length Polymorphisms (AFLPs) revealed no genetic differences between the two sites showing the greatest difference in shell morphology and repair rates. Taken together, our results suggest that L. elliptica exhibits considerable phenotypic plasticity in response to geographic variation in physical disturbance.
Resumo:
Rising anthropogenic CO2 emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO2 concentrations representing the following scenarios: A) pre-industrial (~300 ppm), B) present-day (~400 ppm), C) mid century (~560 ppm) and D) late century (~1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO2-correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO2 concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO2 (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O2 fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO2 to maintain activity such as oxygen production.