952 resultados para ADENOSINE-MONOPHOSPHATE
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.
Resumo:
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 μmol mol−1) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient 13C/12C isotopic composition (δ13C) of air CO2 was changed from-10.2 in ambient [CO2] to-23.6 under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ13C of ear total organic matter and respired CO2, soluble sugar δ13C revealed that a small amount of labelled C reached the ear. The 12CO2 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
Resumo:
Progress in the understanding of the hepatitis C virus life cycle allowed the development of new, very promising antiviral therapies. Although these new drugs have a favourable profile in terms of efficacy, tolerance and interaction potential, their prescription in the setting of comedication and impaired renal or hepatic function remains a challenge. Here, we provide a summary of pharmacological considerations, focusing on sofosbuvir, simeprevir and daclatasvir. A better understanding of their metabolic pathways and transporters may help the prescriber to identify and manage drug interactions especially in patients under immunosuppressive or anti-HIV therapy. Recommendations for the prescription of these drugs in specific situations are also discussed.
Resumo:
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Resumo:
Inducible nitric oxide synthase (iNOS) production of nitric oxide (NO) has been mostly associated with so-called nitrosative stress or interaction with superoxide anion. However, recent investigations have indicated that, as for the other isoenzymes producing NO, guanylyl cyclase (GC) is a very sensitive target of iNOS activity. To further investigate this less explored signaling, the NO-cyclic guanosine 3'-5'-monophosphate (NO-cGMP)-induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation on serine 239 was investigated in human embryonic kidney 293 cells (HEK cells). First, the expression and activity of alpha2 and beta1 NO-sensitive GC subunits was determined by Western blot analysis, reverse transcription-polymerase chain reaction and NO donors administration. Then, the expression of a functional cGMP-dependent protein kinase I (PKGI) was verified by addition of 8-Br-cGMP followed by determination of phosphorylation of VASP on serine 239. Finally, iNOS activation of this signaling pathway was characterized after transfection of HEK cells with human iNOS cDNA. Altogether our data show that iNOS-derived NO activates endogenous NO-sensitive GC and leads to VASP phosphorylation in HEK cells.
Resumo:
Introduction: Le retard de croissance intra-utérin (RCIU) est défini comme une incapacité du foetus à atteindre son plein potentiel de croissance. C'est une complication fréquente (affectant ~8% des grossesses), associée à un risque accru de mortalité et morbidité périnatales et de maladies chroniques à l'âge adulte, telles que les maladies coronariennes, l'hypertension, ou le diabète. Une croissance foetale adéquate est déterminée principalement par la disponibilité en oxygène et nutriments apportés au foetus par la circulation ombilico-placentaire. Chez l'homme, le tonus vasculaire ombilical est régulé majoritairement par la voie du monoxyde d'azote (NO)/GMPc. Nous avons émis l'hypothèse que le RCIU pourrait être associé à des altérations dans la régulation de la circulation ombilicale, en particulier dans la voie du NO/GMPc. Méthodes: Cette étude a été conçue pour identifier dans des cordons ombilicaux, les changements structurels, fonctionnels et moléculaires survenant en cas de RCIU, en particulier dans la veine om-bilicale. Résultats: De façon générale, le diamètre du cordon ombilical était significativement réduit chez les nouveau-nés avec RCIU par rapport aux contrôles. Les mesures histomorphométriques ont mis en évidence une diminution significative de la surface transversale totale ainsi que de muscle lisse dans la veine ombilicale en cas de RCIU. Les études pharmacologiques effectuées sur des anneaux vasculaires de veines ombilicales ont montré une diminution de la tension maximale induite par des vasoconstricteurs chez les garçons avec RCIU, et une réduction significative de la relaxation induite par le NO chez les filles avec RCIU. Cette altération de la relaxation s'accompagne de modifications de plusieurs composants de la voie du NO/GMPc au niveau du muscle lisse de la veine ombilicale des filles avec RCIU. Enfin l'addition d'un inhibiteur non-spécifique des phosphodiesterases (PDEs) a permis d'améliorer la réponse au NO dans tous les groupes et surtout de compenser la réduction de la relaxation induite par le NO chez les filles avec RCIU. Conclusion: Cette étude a permis de mettre en évidence des modifications structurelles dans le cordon ombilical de nouveau-nés présentant un RCIU, ainsi que des changements fonctionnels et moléculaires dans la veine ombilicale, en particulier dans la voie du NO/GMPc, qui pourraient contribuer au développement du RCIU. L'effet bénéfique de l'inhibition des PDEs sur la relaxation suggère qu'elles pourraient constituer des cibles thérapeutiques potentielles.
Resumo:
PURPOSE: Thoracic fat has been associated with an increased risk of coronary artery disease (CAD). As endothelium-dependent vasoreactivity is a surrogate of cardiovascular events and is impaired early in atherosclerosis, we aimed at assessing the possible relationship between thoracic fat volume (TFV) and endothelium-dependent coronary vasomotion. METHODS: Fifty healthy volunteers without known CAD or major cardiovascular risk factors (CRFs) prospectively underwent a (82)Rb cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, and MBF response to cold pressor testing (CPT-MBF) and adenosine (i.e., stress-MBF). TFV was measured by a 2D volumetric CT method and common laboratory blood tests (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hsCRP) were performed. Relationships between CPT-MBF, TFV and other CRFs were assessed using non-parametric Spearman rank correlation testing and multivariate linear regression analysis. RESULTS: All of the 50 participants (58 ± 10y) had normal stress-MBF (2.7 ± 0.6 mL/min/g; 95 % CI: 2.6-2.9) and myocardial flow reserve (2.8 ± 0.8; 95 % CI: 2.6-3.0) excluding underlying CAD. Univariate analysis revealed a significant inverse relation between absolute CPT-MBF and sex (ρ = -0.47, p = 0.0006), triglyceride (ρ = -0.32, p = 0.024) and insulin levels (ρ = -0.43, p = 0.0024), HOMA-IR (ρ = -0.39, p = 0.007), BMI (ρ = -0.51, p = 0.0002) and TFV (ρ = -0.52, p = 0.0001). MBF response to adenosine was also correlated with TFV (ρ = -0.32, p = 0.026). On multivariate analysis, TFV emerged as the only significant predictor of MBF response to CPT (p = 0.014). CONCLUSIONS: TFV is significantly correlated with endothelium-dependent and -independent coronary vasomotion. High TF burden might negatively influence MBF response to CPT and to adenosine stress, even in persons without CAD, suggesting a link between thoracic fat and future cardiovascular events.
Resumo:
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Resumo:
Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly 'tuned,' can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P(1),P(4)-diadenosine tetraphosphate (Ap4A), and P(1),P(5)-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.
Resumo:
PURPOSE: Obstructive sleep apnea syndrome (OSA) increases the risk of cardiovascular disease. We aimed at evaluating the effect of continuous positive airway pressure (CPAP) treatment on coronary endothelium-dependent vasoreactivity in OSA patients by quantifying myocardial blood flow (MBF) response to cold pressure testing (CPT). METHODS: In the morning after polysomnography (PSG), all participants underwent a dynamic (82)Rb cardiac positron emitting tomography/computed tomography (PET/CT) scan at rest, during CPT and adenosine stress. PSG and PET/CT were repeated at least 6 weeks after initiating CPAP treatment. OSA patients were compared to controls and according to response to CPAP. Patients' characteristics and PSG parameters were used to determine predictors of CPT-MBF. RESULTS: Thirty-two untreated OSA patients (age 58 ± 13 years, 27 men) and 9 controls (age 62 ± 5 years, 4 men) were enrolled. At baseline, compared to controls (apnea-hypopnea index (AHI) = 5.3 ± 2.6/h), untreated OSA patients (AHI = 48.6 ± 19.7/h) tend to have a lower CPT-MBF (1.1 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.09). After initiating CPAP, CPT-MBF was not different between well-treated patients (AHI <10/h) and controls (1.3 ± 0.3 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.83), but it was lower for insufficiently treated patients (AHI ≥10/h) (0.9 ± 0.2 mL/min/g vs. 1.3 ± 0.4 mL/min/g, p = 0.0045). CPT-MBF was also higher in well-treated than in insufficiently treated patients (1.3 ± 0.3 mL/min/g vs. 0.9 ± 0.2 mL/min/g, p = 0.001). Mean nocturnal oxygen saturation (β = -0.55, p = 0.02) and BMI (β = -0.58, p = 0.02) were independent predictors of CPT-MBF in OSA patients. CONCLUSIONS: Coronary endothelial vasoreactivity is impaired in insufficiently treated OSA patients compared to well-treated patients and controls, confirming the need for CPAP optimization.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.
Resumo:
Cocoa consumption began in America and in the mid sixteenth Century it quickly spread to Europe. Beyond being considered a pleasant habit due to its rich sweet lingering taste, chocolate was considered a good nutrient and even a medicine. Traditionally, health benefits of cocoa have been related with the high content of antioxidants of Theobroma cocoa beans. However, the direct psychoactive effect due to methylxanthines in cocoa is notable. Theobromine and caffeine, in the proportions found in cocoa, are responsible for the liking of the food/beverage. These compounds influence in a positive way our moods and our state of alertness. Theobromine, which is found in higher amounts than caffeine, seems to be behind several effects attributed to cocoa intake. The main mechanisms of action are inhibition of phosphodiesterases and blockade of adenosine receptors. Further mechanisms are being explored to better understand the health benefits associated to theobromine consumption. Unlike what happens in other mammals -pets- included, theobromine is safe for humans and has fewer unwanted effects than caffeine. Therefore, theobromine deserves attention as one of the most attractive molecules in cocoa.
Resumo:
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol a -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA A receptor labelling in the hippo- campal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extra- cellular levels were studied in control and lesioned rats. In vivo effects of 100 m M KCl perfusion and adenosine A 1 receptor blockade with 1,3-dipropyl- 8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA A receptors and decreased glutamate neurotransmis- sion. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.