969 resultados para 770602 Land and water management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil is an essential resource for life and its properties are susceptible to be modified by tillage systems. The impact of management practices on soil functions can be assessed through a soil quality index. It is interesting to assess soil quality in different soil types. Therefore, the aim of this study was to determine the soil quality index of a Paleudult under different management conditions and sunflower culture. The experiment was carried out in Botucatu (SP, Brazil), in an 11-year non-tilled area used for growing soybean and maize during summer and black oat or triticale in winter. Four management systems were considered: no-tillage with a hoe planter (NTh), no-tillage with a double-disk planter (NTd), reduced tillage (RT) and conventional tillage (CT). Soil samples were taken from the planting lines at harvest time. To determine the soil quality indices, following the methodology proposed by Karlen and Stott (1994), three main soil functions were assessed: soil capacity for root development, water storage capacity of the soil and nutrient supply capacity of the soil. The studied Paleudult was considered a soil with good quality under all the observed management systems. However, the soil quality indices varied between treatments being 0.64, 0.68, 0.86 and 0.79 under NTh, NTd, RT and CT, respectively. Physical attributes such as resistance to penetration and macroporosity increased the soil quality index in RT and CT compared to NTh and NTd. The soil quality indices obtained suggested that the evaluated soil is adequate for sunflower production under our study conditions. In view of the SQI values, RT is the most suitable management for this site since it preserves soil quality and provides an acceptable sunflower yield. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The economic impact of climate change on root crop, fisheries and vegetable production for Trinidad and Tobago under the A2 and B2 scenarios were modeled, relative to a baseline ―no climate change‖ case, where the mean temperature and rainfall for a base period of 1980 – 2000 was assumed for the years up to 2050. Production functions were used, using ARMA specifications to correct for serial autocorrelation. For the A2 scenarios, rainfall is expected to fall by approximately 10% relative to the baseline case in the 2020s, but is expected to rise thereafter, until by the 2040s rainfall rises slightly above the mean for the baseline case. For the B2 scenario, rainfall rose slightly above the mean for the baseline case in the current decade, but falls steadily thereafter to approximately 15% by the 2040s. Over the same period, temperature is expected to increase by 1.34C and 1.37C under A2 and B2 respectively. It is expected that any further increase in rainfall should have a deleterious effect on root crop production as a whole, since the above mentioned crops represent the majority of the root crops included in the study. Further expected increases in temperature will result in the ambient temperature being very close to the optimal end of the range for most of these crops. By 2050, the value of yield cumulative losses (2008$) for root crops is expected to be approximately 248.8 million USD under the A2 scenario and approximately 239.4 million USD under the B2 scenario. Relative to the 2005 catch for fish, there will be a decrease in catch potential of 10 - 20% by 2050 relative to 2005 catch potentials, other things remaining constant. By 2050 under the A2 and B2 scenarios, losses in real terms were estimated to be 160.2 million USD and 80.1 million USD respectively, at a 1% discount rate. For vegetables, the mean rainfall exceeds the optimal rainfall range for sweet peppers, hot peppers and melongene. However, while the optimal rainfall level for tomatoes is 3000mm/yr, other vegetables such as sweet peppers, hot peppers and ochroes have very low rainfall requirements (as low as 300 mm/yr). Therefore it is expected that any further decrease in rainfall should have a mixed effect on individual vegetable production. It is expected that any further increase in temperature should have a mixed effect on individual vegetable production, though model results indicated that as a group, an increase in temperature should have a positive impact on vegetable production. By 2050, the value of yield cumulative gains (2008$) for vegetables is expected to be approximately 54.9 million USD under the A2 scenario and approximately 49.1 million USD under the B2 scenario, given a 1% discount rate. For root crops, fisheries and vegetables combined, the cumulative loss under A2 is calculated as approximately 352.8 million USD and approximately 270.8 million USD under B2 by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios respectively by 2050. Sea Level Rise (SLR) by 2050 is estimated to be 0.255 m under A2 and 0.215 m under B2. GIS estimation indicated that for a 0.255 m sea level rise, combined with a 0.5 m high tide, there would be no permanent inundation of agricultural land in Trinidad. The total inundation area is 1.18 km2. This occurs only in the Caroni Watershed, on the western coast of Trinidad, and the areas are outside the Caroni Swamp. Even with an additional rise of 0.5 m to simulate a high rainfall event, the estimated inundated area is 4.67 km2, but with no permanent inundation, though likely to be subject to flooding. Based on eleven (11) evaluation criteria, the top potential adaptation options were identified: 1. Use of water saving irrigation systems and water management systems e.g. drip irrigation; 2. Mainstream climate change issues into agricultural management; 3. Repair/maintain existing dams; 4. Alter crop calendar for short-term crops; 5. Adopt improved technologies for soil conservation; 6. Establish systems of food storage; 7. Promote water conservation – install on-farm water harvesting off roof tops; 8. Design and implement holistic water management plans for all competing uses; 9. Build on- farm water storage (ponds and tanks); 10. Agricultural drainage; and 11. Installation of greenhouses. The most attractive adaptation options, based on the Benefit-Cost Ratio are: (1) Build on- farm water storage such as ponds and tanks (2) Mainstreaming climate change issues into agricultural management and (3) Water Harvesting. However, the options with the highest net benefits are, (in order of priority): (1) Build on- farm water storage such as ponds and tanks, (2) Mainstreaming climate change issues into agricultural management and (3) Use of drip irrigation. Based on the area burnt in Trinidad and Tobago between 2005 and 2009, the average annual loss due to fires is 1717.3 ha. At US$17.41 per carbon credit, this implies that for the total land lost to forest fires on average each year, the opportunity cost of carbon credit revenue is 74.3 million USD. If a teak reforestation programme is undertaken in Trinidad and Tobago, the net benefit of reforestation under a carbon credit programme would be 69 million USD cumulatively to 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of silicon application adjusted with nitrogen fertilization via top-dressing on grain productivity, the silicon contents of the soil, in the plant tissue and nitrogen contents in dry and irrigated conditions. The experimental outlining was from designed blocks with subdivided parcels and four repetitions. The treatments consisted of culture system (dry and irrigated) and the under parcels by the combination of silicon (0 and 100 kg ha(-1)), in magnesium and calcium silicate form (with 23% of SiO2), and four doses of N (urea) via top-dressing (0, 30, 60 and 90 kg ha(-1)). Silicon application at sowing furrow was a viable technique because it provided significant increase in the content of this element in the root growth of rice. The application of silicon in the sowing furrow did not change the content of the element nor the nitrogen nutrition in rice plants. The nitrogen application reduced the silicon content and increased nitrogen nutrition in rice plants. Silicon application at sowing furrow provided no increase in rice grain yield. When there was no water limitation to nitrogen fertilization enhanced linearly on rice grain yield, whereas under water stress the effect of nitrogen fertilization was limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to simulate and evaluate the sediment transport in Upper Basin Stream Cachoeirinha in Rio Claro, SP, and compare the results with previous studies performed in the same basin. The modeling software used in this study was Soil and Water Assessment Tool (SWAT), which is a very comprehensive tool that discusses many physical processes. In this work, the hydrosedimentological processes were treated, aiming to understand the sediment production and transport. The Basin Stream Cachoeirinha has an area with predominantly agricultural use, especially sugar cane. The database for inclusion in software was constructed from the following elements: climatic, topographical, soil type and use and land cover of the area, also including the parameters of Modified Universal Soil Loss Equation (MUSLE). The analysis was conducted for a period of 16 years (1994-2010), which is the range of data available from CEAPLA. The results were analyzed in terms of annual runoff and sediment yield. The average sediment delivery in the simulation was 0.94 t/ha/year, while the maximum annual contribution was 7.28 t/ha/year

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the work was to evaluate the productivity, leaf nutrient content and soil nutrient concentration in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees-TS), after two years of cultivation following a randomized block design. The experiment was carried out in the Brazilian Association of Biodynamic Agriculture, in Botucatu—S?o Paulo, Brazil. Treatments were: control (C), chemical fertilizer application (F), biomass of L. diversifolia alley cropping application (B), biomass of L. diversifolia alley cropping + chemical fertilizer application (B + F). In the second year of management it was observed that black oat yield was higher in treatments B + F and F with significant difference in relation to the others treatments in both systems, followed by treatment B. Between systems, only treatment B showed significant difference, with higher yield value corresponding to AFS, reflecting the efficiency of AFS to promote soil fertility. Maize production presented the second year of cultivation an increasing trend in all treatments in both production systems. This result may be due to the cumulative effect of mineralization and maize straw and oats, along the experiment. How productivity was higher in the AFS system, could also be occurring effect of biological nitrogen fixation, water retention and reduction of extreme microclimate through the rows of L. diversifolia. Comparing the AFS and TS, it was observed that the concentration of N in leaf tissue was higher in the AFS treatments, probably due to nitrogen fixation performed through the rows of L. diversifolia, that is a nitrogen fixing tree species. After two years, carbon stocked in soil show higher values in the treatments biomass + fertilizer and biomass application, in both systems, AFS and TS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate seasonal to interannual streamflow forecasts based on climate information are critical for optimal management and operation of water resources systems. Considering most water supply systems are multipurpose, operating these systems to meet increasing demand under the growing stresses of climate variability and climate change, population and economic growth, and environmental concerns could be very challenging. This study was to investigate improvement in water resources systems management through the use of seasonal climate forecasts. Hydrological persistence (streamflow and precipitation) and large-scale recurrent oceanic-atmospheric patterns such as the El Niño/Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific North American (PNA), and customized sea surface temperature (SST) indices were investigated for their potential to improve streamflow forecast accuracy and increase forecast lead-time in a river basin in central Texas. First, an ordinal polytomous logistic regression approach is proposed as a means of incorporating multiple predictor variables into a probabilistic forecast model. Forecast performance is assessed through a cross-validation procedure, using distributions-oriented metrics, and implications for decision making are discussed. Results indicate that, of the predictors evaluated, only hydrologic persistence and Pacific Ocean sea surface temperature patterns associated with ENSO and PDO provide forecasts which are statistically better than climatology. Secondly, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river-reservoir systems. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas. Lastly, a simplified two-stage stochastic economic-optimization model was proposed to investigate improvement in water use efficiency and the potential value of using seasonal forecasts, under the assumption of optimal decision making under uncertainty. Model results demonstrate that incorporating the probabilistic inflow forecasts into the optimization model can provide a significant improvement in seasonal water contract benefits over climatology, with lower average deficits (increased reliability) for a given average contract amount, or improved mean contract benefits for a given level of reliability compared to climatology. The results also illustrate the trade-off between the expected contract amount and reliability, i.e., larger contracts can be signed at greater risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Madagascar’s terrestrial and aquatic ecosystems have long supported a unique set of ecological communities, many of whom are endemic to the tropical island. Those same ecosystems have been a source of valuable natural resources to some of the poorest people in the world. Nevertheless, with pride, ingenuity and resourcefulness, the Malagasy people of the southwest coast, being of Vezo identity, subsist with low development fishing techniques aimed at an increasingly threatened host of aquatic seascapes. Mangroves, sea grass bed, and coral reefs of the region are under increased pressure from the general populace for both food provisions and support of economic opportunity. Besides purveyors and extractors, the coastal waters are also subject to a number of natural stressors, including cyclones and invasive, predator species of both flora and fauna. In addition, the aquatic ecosystems of the region are undergoing increased nutrient and sediment runoff due, in part, to Madagascar’s heavy reliance on land for agricultural purposes (Scales, 2011). Moreover, its coastal waters, like so many throughout the world, have been proven to be warming at an alarming rate over the past few decades. In recognizing the intimate interconnectedness of the both the social and ecological systems, conservation organizations have invoked a host of complimentary conservation and social development efforts with the dual aim of preserving or restoring the health of both the coastal ecosystems and the people of the region. This paper provides a way of thinking more holistically about the social-ecological system within a resiliency frame of understanding. Secondly, it applies a platform known as state-and-transition modeling to give form to the process. State-and-transition modeling is an iterative investigation into the physical makeup of a system of study as well as the boundaries and influences on that state, and has been used in restorative ecology for more than a decade. Lastly, that model is sited within an adaptive management scheme that provides a structured, cyclical, objective-oriented process for testing stakeholders cognitive understanding of the ecosystem through a pragmatic implementation and monitoring a host of small-scale interventions developed as part of the adaptive management process. Throughout, evidence of the application of the theories and frameworks are offered, with every effort made to retool conservation-minded development practitioners with a comprehensive strategy for addressing the increasingly fragile social-ecological systems of southwest Madagascar. It is offered, in conclusion, that the seascapes of the region would be an excellent case study worthy of future application of state-and-transition modeling and adaptive management as frameworks for conservation-minded development practitioners whose multiple projects, each with its own objective, have been implemented with a single goal in mind: preserve and protect the state of the supporting environment while providing for the basic needs of the local Malagasy people.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Hyponatremia is frequently observed in intensive care unit (ICU) patients, but there is still lack information on the physiological mechanisms of development. MATERIALS AND METHODS In this retrospective analysis we performed tonicity balances in 54 patients with ICU acquired hyponatremia. We calculated fluid and solute in and outputs during 24 hours in 106 patient days with decreasing serum-sodium levels. RESULTS We could observe a positive fluid balance as a single reason for hyponatremia in 25% of patients and a negative solute balance in 57%. In 18% both factors contributed to the decrease in serum-sodium. Hyponatremic patients had renal water retention, measured by electrolyte free water clearance calculation in 79% and positive input of free water in 67% as reasons for decline of serum-sodium. The theoretical change of serum sodium during 24 hours according to the calculations of measured balances correlated well with the real change of serum sodium (r = 0.78, P < .01). CONCLUSIONS Balance studies showed that renal water retention together with renal sodium loss and high electrolyte free water input are the major contributors to the development of hyponatremia. Control of renal water and sodium handling by urine analysis may contribute to a better fluid management in the ICU population.