894 resultados para 4point light 10W with miniature Wenner-Array


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An organic integrated pixel with organic light-emitting diodes (OLEDs) driven by organic thin film transistors (OTFTs) is fabricated by a greatly simplified processing. The OTFTs are based on copper phthalocyanine as the active medium and fabricated on indium-tin-oxide (ITO) glass with top-gate structure, thus an organic integrated pixel is easily made by integrating OLED with OTFT. The OTFTs show field-effect mobility of 0.4 cm(2) /Vs and on/off ratio of 10(3) order. The OLED is driven well and emits the brightness as large as 2100cd/m(2) at a current density of 14.6 mu A/cm(2) at -19.7 V gate voltage. This simple device structure is promising in the future large-area flexible OLED displays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, low surface energy separators With undercut structures were fabricated through a full solution process, These low Surface energy separators are more suitable for application in inkjet printed passive-matrix displays of polymer light-emitting diodes. A patterned PS film was formed on the P4VP/photoresist film by microtransfer printing firstly. Patterned Au-coated Ni film was formed on the uncovered P4VP/photoresist film by electroless deposition. This metal film was used as mask to pattern the photoresist layer and form undercut structures with the patterned photoresist layer. The surface energy of the metal film also decreased dramatically from 84.6 mj/m(2) to 21.1 mJ/m(2) by modification of fluorinated mercaptan self-assemble monolayer on Au surface. The low surface energy separators were used to confine the flow of inkjet printed PFO solution and improve the patterning resolution of inkjet printing successfully. Separated PFO stripes, complement with the pattern of the separators, formed through inkjet printing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By codoping blue and orange phosphorescent dyes into a single host material, a highly efficient white organic light-emitting diode (WOLED) with Commission Internationale de L'Eclairage coordinates of (0.38, 0.43) at 12 V is demonstrated. Remarkably, this WOLED achieves reduced current efficiency roll-off, which slightly decreases from its maximum value of 37.3-31.0 cd/A at 1000 cd/m(2). The device operational mechanism is subsequently investigated in order to unveil the origin of the high performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An alternative way to optimize the emission characteristics of a microcavity top-emitting organic light-emitting diode (TOLED) based on a simple device structure is demonstrated via combining a comprehensive theoretical analysis in the microcavity effects with the experimental modification in the carrier injection of both electrodes. It can be seen that the resulting TOLED exhibits much higher efficiencies and a more saturated color than those of the corresponding conventional bottom-emitting device, as well as hardly detectable color shift with viewing angles. Such a strategy may be more feasible in practical application for active-matrix organic light-emitting diode displays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have found that organic light-emitting diode (OLED) performance was highly improved by using europium oxide (Eu2O3) as a buffer layer on indium tin oxide (ITO) in OLEDs based on tris-(8-hydroxyquinoline) aluminium (Alq(3)), which showed low turn-on voltage, high luminance, and high electroluminescent (EL) efficiency. The thickness of Eu2O3 generally was 0.5-1.5 nm. We investigated the effects of Eu2O3 on internal electric field distributions in the device through the analysis of current-voltage characteristics, and found that the introduction of the buffer layer balanced the internal electric field distributions in hole transport layer (HTL) and electron transport layer (ETL), which should fully explain the role of the buffer layer in improving device performance. Our investigation demonstrates that the hole injection is Fowler-Nordheim (FN) tunnelling and the electron injection is Richardson-Schottky (RS) thermionic emission, which are very significant in understanding the operational mechanism and improving the performance, of OLEDs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Efficient multilayer white polymer light-emitting diodes (WPLEDs) with aluminum cathodes are fabricated. The multilayer structure is composed of a water soluble hole-injection layer, a toluene-soluble emissive layer, and an alcohol-soluble emissive layer. The polarity difference of the solvents used for spin coating these polymers allows for realization of the multilayer polymer structure. The recombination zone confined at the interface of the two emissive polymers avoids exciton quenching by electrodes, and white emission is realized by harvesting photons emitted from the two emissive polymers. A maximum luminous efficiency of 16.9 cd/A and a power efficiency of 11.1 lm/W are achieved for this WPLED.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We fabricated efficient top-emitting organic light-emitting diodes (OLEDs) with silver (Ag) as an anode and samarium (Sm) as a semi-transparent cathode. The hole-injection barrier at the Ag anode/hole transporter interface is reduced by inserting a buffer layer of vanadium oxide (V2O5) between them. The ultraviolet photoelectron spectroscopy analysis shows that the hole-injection barrier is reduced by 0.5 eV. Both the V2O5 thickness and the organic layer thickness are optimized. The optimized device achieves a maximum current efficiency of 5.46 cd A(-1) and a power efficiency of 3.90 lm W-1, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the detailed conversion process of the dominant electroluminescence (EL) mechanism in a device with Eu(TTA)(3)phen (TTA=thenoyltrifluoroacetone, phen=1,10-phenanthroline) doped CBP (4,4(')-N,N-'-dicarbazole-biphenyl) film as the emitting layer was investigated by analyzing the evolution of carrier distribution on dye and host molecules with increasing voltage. Firstly, it was confirmed that only electrons can be trapped in Eu(TTA)(3)phen doped CBP. As a result, holes and electrons would be situated on CBP and Eu(TTA)(3)phen molecules, respectively, and thus creates an unbalanced carrier distribution on both dye and host molecules. With the help of EL and photoluminescence spectra, the distribution of holes and electrons on both Eu(TTA)(3)phen and CBP molecules was demonstrated to change gradually with increasing voltage. Therefore, the dominant EL mechanism in this device changes gradually from carrier trapping at relatively low voltage to Forster energy transfer at relatively high voltage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have fabricated and measured a series of electroluminescent devices with the structure of ITO/TPD/Eu(TTA)(3)phen (x):CBP/BCP/ ALQ/LiF/Al, where x is the weight percentage of Eu(TTA)3phen (from 0% to 6%). At very low current density, carrier trapping is the dominant luminescent mechanism and the 4% doped device shows the highest electroluminescence (EL) efficiency among all these devices. With increasing current density, Forster energy transfer participates in EL process. At the current density of 10.0 and 80.0mA/ cm(2), 2% and 3% doped devices show the highest EL efficiency, respectively. From analysis of the EL spectra and the EL efficiency-current density characteristics, we found that the EL efficiency is manipulated by Forster energy transfer efficiency at high current density. So we suggest that the dominant luminescent mechanism changes gradually from carrier trapping to Forster energy transfer with increasing current density. Moreover, the conversion of dominant EL mechanism was suspected to be partly responsible for the EL efficiency roll-off because of the lower EL quantum efficiency of Forster energy transfer compared with carrier trapping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate extremely stable and highly efficient organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO3) as a buffer layer on indium tin oxide (ITO). The significant features of MoO3 as a buffer layer are that the OLEDs show low operational voltage, high electroluminescence (EL) efficiency and good stability in a wide range of MoO3 thickness. A green OLED with structure of ITO/MoO3/N,N-'-di(naphthalene-1-yl)-N,N-'-diphenyl-benzidene (NPB)/NPB: tris(8-hydroxyquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/Alq(3)/LiF/Al shows a long lifetime of over 50 000 h at 100 cd/m(2) initial luminance, and the power efficiency reaches 15 lm/W. The turn-on voltage is 2.4 V, and the operational voltage at 1000 cd/m(2) luminance is only 6.9 V. The significant enhancement of the EL performance is attributed to the improvement of hole injection and interface stability at anode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An interconnecting layer of Al (2 nm)/WO3 (3 nm)/Au (16 nm) was studied for application in tandem organic light-emitting devices. It can be seen that the Al/WO3/Au structure plays the role of an excellent interconnecting layer. The introduction of WO3 in the connection unit significantly improves the device efficiency as compared to the case of Al/Au. Thus, the current efficiency of the two-unit tandem devices is enhanced by two factors with respect to the one-unit devices. The green two-unit tandem device of indium tin oxide/MoO3/4,4(')-N,N-'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl(NPB)/tris(8-hydroxylquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one (C545T)/Alq(3)/LiF/Al/WO3/Au/MoO3/NPB/Alq(3):C545T/Alq(3)/LiF/Al showed a maximum current efficiency of 33.9 cd/A and a power efficiency of 12.0 lm/W.