976 resultados para 300510 Virology
Resumo:
A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miRNA 203 (miR-203), which has previously been shown to play an important role in epithelial cell biology by regulating p63 levels. We investigated how expression of human papillomavirus type 16 (HPV16) oncoproteins E6 and E7 affected miR-203 expression during proliferation and differentiation of HFKs. We demonstrated that miR-203 expression is reduced in HFKs where p53 function is compromised, either by the viral oncoprotein E6 or by knockout of p53 using short hairpin RNAs (p53i). We show that the induction of miR-203 observed during calcium-induced differentiation of HFKs is significantly reduced in HFKs expressing E6 and in p53i HFKs. Induction of miR-203 in response to DNA damage is also reduced in the absence of p53. We report that proliferation of HFKs is dependent on the level of miR-203 expression and that overexpression of miR-203 can reduce overproliferation in E6/E7-expressing and p53i HFKs. In summary, these results indicate that expression of miR-203 is dependent on p53, which may explain how expression of HPV16 E6 can disrupt the balance between proliferation and differentiation, as well as the response to DNA damage, in keratinocytes.
Resumo:
Suppressors of cytokine signaling (SOCS) proteins are a family of proteins that are able to act in a classic negative feedback loop to regulate cytokine signal transduction. The regulation of the immune response by SOCS proteins may contribute to persistent infection or even a fatal outcome. In this study, we have investigated the induction of SOCS 1-3 after peripheral infection with West Nile virus (WNV) or tick-borne encephalitis virus (TBEV) in the murine model. We have shown that the cytokine response after infection of mice with WNV or TBEV induces an upregulation in the brain of mRNA transcripts for SOCS 1 and SOCS 3, but not SOCS 2. We hypothesize that SOCS proteins may play a role in limiting cytokine responses in the brain as a neuroprotective mechanism, which may actually enhance the ability of neuroinvasive viruses such as WNV and TBEV to spread and cause disease.
Resumo:
http://www.jidc.org/index.php/journal/article/view/20818098/422 Background: Extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae have been reported previously from Pakistan but the genotypic characteristics of these enzymes is not known. Hence the aim of the study was first to characterise the genotypic content of these beta-lactamases and secondly to assess the clonal relationship of these isolates. Methodology: We analysed 65 non-duplicate ESBL positive, K. pneumoniae isolates prospectively collected based on phenotype as detected using the two-disc method. Isolates were collected from different sources: blood cultures (46.15%; n = 30); tracheal aspirates (24.6%; n = 16); urine (10.7%; n = 7); wound swabs, pus and tissue (18.4%; n = 12). ESBL production was confirmed by the ESBL E-test method and the presence of the blaCTX-M encoding genes was confirmed by polymerase chain reaction. The clonal relationship of clinical isolates was studied by Pulsed Field Gel Electrophoresis. Results: The results showed that 93.84% (n = 61) isolates of K. pneumoniae were positive for the blaCTX-M-1 group. One isolate showed PCR signals for blaCTX-M-25 group. None of our isolates were positive for CTX-M groups 2, 8 and 9. The majority of blaCTX-M positive isolates were genetically unrelated and no epidemic clones were identified. Conclusion: This study reports the emergence of CTX-M groups 1 and 25 producing isolates of K. pneumoniae with genetic diversity in Karachi, Pakistan.
Resumo:
Vaginal ring devices capable of providing sustained/controlled release of incorporated actives are already marketed for steroidal contraception and estrogen replacement therapy. In recent years, there has been considerable interest in developing similar ring devices for the administration of microbicidal compounds to prevent vaginal HIV transmission. Intended to be worn continuously, such coitally independent micro- bicide rings are being developed to maintain effective vaginal microbicide concentrations over many weeks or months, thereby overcoming issues around timing of product application, user compliance and acceptability associated with more conventional semi-solid formulations. In this article, an overview of vaginal ring technologies is presented, followed by a review of recent advances and issues pertaining to their application for the delivery of HIV microbicides. This article forms part of a special supplement on presentations covering intravaginal rings, based on the symposium “Trends in Microbicide Formulations”, held on 25 and 26 January 2010, Arlington, VA.
Resumo:
Background Varicella infection during pregnancy poses a serious risk for both foetus and mother. It has been suggested that it would be more cost-effective to screen antenatally with post-partum vaccination, which occurs in the US, than the current policy of checking immune status post varicella exposure, with VZIG administration where necessary. Additionally, it is doubtful whether the current policy provides best patient care, when a vaccine is available. Objectives The study aims to retrospectively compare the cost of the current policy with a cost estimate for antenatal screening with post-partum vaccination in NI. Study design A cost estimate of antenatal screening of primigravidas, with post-partum vaccination, was calculated for two models: (1) verbal screening, with serological testing of those with no history of varicella infection and (2) serological screening of all primigravidas. Results The cost of VZIG issued to pregnant women in 2006 was £100,800; 43% of births were to primigravidas therefore the estimated cost of VZIG issued to multigravidas was £58,100. The cost of verbal screening with post-partum vaccination is estimated at £23,750 p.a., saving £34,350 over current policy. The estimated cost of screening all primigravidas with post-partum vaccination is £43,000, saving £15,100. Conclusions This retrospective study suggests that in NI either of the proposed antenatal screening strategies would be less costly than current practice. This finding supports the suggestion that varicella immunity testing should be included in the Antenatal Infectious Diseases Screening Programme, either as part of the universal vaccination programme or solely as an antenatal programme.
Resumo:
Reverse genetics has facilitated the use of non-segmented negative strand RNA viruses (NNSV) as vectors. Currently, heterologous gene expression necessitates insertion of extra-numeral transcription units (ENTUs), which may alter the NNSV polar transcription gradient and attenuate growth relative to wildtype (Wt). We hypothesized that rescuing recombinant Sendai Virus (rSeV) with a bicistronic gene might circumvent this attenuation but still allow heterologous open reading frame (ORF) expression. Therefore, we used a 9-nucleotide sequence previously described with internal ribosome entry site (IRES) activity, which, when constructed as several repeats, synergistically increased the level of expression of the second cistron [Chappell, S.A., Edelman, G.M., Mauro, V.P., 2000. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. U.S.A. 97, 1536-1541]. We inserted the Renilla luciferase (rLuc) ORF, preceded by 1, 3 or 7 IRES copies, downstream of the SeV N ORF in an infectious clone. Corresponding rSeVs were successfully rescued. Interestingly, bicistronic rSeVs grew as fast as or faster than Wt rSeV. Furthermore, SeV gene transcription downstream of the N/rLuc gene was either equivalent to, or slightly enhanced, compared to Wt rSeV. Importantly, all rSeV/rLuc viruses efficiently expressed rLuc. IRES repetition increased rLuc expression at a multiplicity of infection of 0.1, although without evidence of synergistic enhancement. In conclusion, our approach provides a novel way of insertion and expression of foreign genes in NNSVs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Respiratory viruses are among the most important causes of morbidity and mortality worldwide. From a vaccine viewpoint, such viruses may be divided into two principle groups-those where infection results in long-term immunity and whose continued survival requires constant mutation, and those where infection induces incomplete immunity and repeated infections are common, even with little or no mutation. Influenza virus and respiratory syncytial virus (RSV) typify the former and latter groups, respectively. Importantly, successful vaccines have been developed against influenza virus. However, this is not the case for RSV, despite many decades of research and several vaccine approaches. Similar to natural infection, the principle limitation of candidate RSV vaccines in humans is limited immunogenicity, characterised in part by short-term RSV-specific adaptive immunity. The specific reasons why natural RSV infection is insufficiently immunogenic in humans are unknown but circumvention of innate and adaptive immune responses are likely causes. Fundamental questions concerning RSV/host interactions remain to be addressed at both the innate and adaptive immune levels in humans in order to elucidate mechanisms of immune response circumvention. Taking the necessary steps back to generate such knowledge will provide the means to leap forward in our quest for a successful RSV vaccine. Recent developments relating to some of these questions are discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Respiratory syncytial virus (RSV) infection causes bronchiolitis and pneumonia in infants. RSV has a linear single-stranded RNA genome encoding 11 proteins, 2 of which are nonstructural (NS1 and NS2). RSV specifically downregulates STAT2 protein expression, thus enabling the virus to evade the host type I interferon response. Degradation of STAT2 requires proteasomal activity and is dependent on the expression of RSV NS1 and NS2 (NS1/2). Here we investigate whether RSV NS proteins can assemble ubiquitin ligase (E3) enzymes to target STAT2 to the proteasome. We demonstrate that NS1 contains elongin C and cullin 2 binding consensus sequences and can interact with elongin C and cullin 2 in vitro; therefore, NS1 has the potential to act as an E3 ligase. By knocking down expression of specific endogenous E3 ligase components using small interfering RNA, NS1/2, or RSV-induced STAT2, degradation is prevented. These results indicate that E3 ligase activity is crucial for the ability of RSV to degrade STAT2. These data may provide the basis for therapeutic intervention against RSV and/or logically designed live attenuated RSV vaccines.
Resumo:
The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein v.,as isolated from [S-35]methionine- and [P-33]orthophosphate-labelled IRSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role or tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580. an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependant tyrosine kinase activity and that this modification influences its cellular distribution.
Resumo:
The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (Mpro) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV Mpro is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-ß-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV Mpro autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln?(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of Mpro, resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative Mpro autoprocessing sites has not been described previously for other nidovirus Mpro domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.
Resumo:
The "phiKMV-like viruses" comprise an important genus of T7 related phages infecting Pseudomonas aeruginosa. The genomes of these bacteriophages have localized single-strand interruptions (nicks), a distinguishing genomic trait previously thought to be unique for T5 related coliphages. Analysis of this feature in the newly sequenced phage fkF77 shows all four nicks to be localized on the non-coding DNA strand. They are present with high frequencies within the phage population and are introduced into the phage DNA at late stages of the lytic cycle. The general consensus sequence in the nicks (5'-CGACxxxxxCCTAoh pCTCCGG-3') was shown to be common among all phiKMV-related phages.
Resumo:
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.