934 resultados para 3-DIMENSIONAL CONFORMAL RADIOTHERAPY


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Magnetic resonance imaging (MRI) of the prostate is considered to be the most precise noninvasive staging modality for localized prostate cancer. Multiparametric MRI (mpMRI) dynamic sequences have recently been shown to further increase the accuracy of staging relative to morphological imaging alone. Correct radiological staging, particularly the detection of extraprostatic disease extension, is of paramount importance for target volume definition and dose prescription in highly-conformal curative radiotherapy (RT); in addition, it may affect the risk-adapted duration of additional antihormonal therapy. The purpose of our study was to analyze the impact of mpMRI-based tumor staging in patients undergoing primary RT for prostate cancer. METHODS A total of 122 patients admitted for primary RT for prostate cancer were retrospectively analyzed regarding initial clinical and computed tomography-based staging in comparison with mpMRI staging. Both tumor stage shifts and overall risk group shifts, including prostate-specific antigen (PSA) level and the Gleason score, were assessed. Potential risk factors for upstaging were tested in a multivariate analysis. Finally, the impact of mpMRI-based staging shift on prostate RT and antihormonal therapy was evaluated. RESULTS Overall, tumor stage shift occurred in 55.7% of patients after mpMRI. Upstaging was most prominent in patients showing high-risk serum PSA levels (73%), but was also substantial in patients presenting with low-risk PSA levels (50%) and low-risk Gleason scores (45.2%). Risk group changes occurred in 28.7% of the patients with consequent treatment adaptations regarding target volume delineation and duration of androgen deprivation therapy. High PSA levels were found to be a significant risk factor for tumor upstaging and newly diagnosed seminal vesicle infiltration assessed using mpMRI. CONCLUSIONS Our findings suggest that mpMRI of the prostate leads to substantial tumor upstaging, and can considerably affect treatment decisions in all patient groups undergoing risk-adapted curative RT for prostate cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recombinant type 3 ryanodine receptor (RyR3) has been purified in quantities sufficient for structural characterization by cryoelectron microscopy and three-dimensional (3D) reconstruction. Two cDNAs were prepared and expressed in HEK293 cells, one encoding the wild-type RyR3 and the other encoding RyR3 containing glutathione S-transferase (GST) fused to its amino terminus (GST-RyR3). RyR3 was purified from detergent-solubilized transfected cells by affinity chromatography using 12.6-kDa FK506-binding protein in the form of a GST fusion as the affinity ligand. Purification of GST-RyR3 was achieved by affinity chromatography by using glutathione-Sepharose. Purified recombinant RyR3 and GST-RyR3 proteins exhibited high-affinity [3H]ryanodine binding that was sensitive to activation by Ca2+ and caffeine and to inhibition by Mg2+. 3D reconstructions of both recombinant RyR3 and GST-RyR3 appeared very similar to that of the native RyR3 purified from bovine diaphragm. Comparison of the 3D reconstructions of RyR3 and GST-RyR3 revealed that the GST domains and, hence, the amino termini of the RyR3 subunits are located in the “clamp” structures that form the corners of the square-shaped cytoplasmic region of homotetrameric RyR3. This study describes the 3D reconstruction of a recombinant ryanodine receptor and it demonstrates the potential of this technology for characterizing functional and structural perturbations introduced by site-directed mutagenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this Erratum, we point out the reason for an error in the derivation of a result in our earlier paper, “Two-Dimensional Failure Modeling with Minimal Repair” [1], which appeared in the April 2004 issue of this journal, 51:3, on pages 345–362, and give the correct derivation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up.

METHODS: CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b-T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3-6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923.

FINDINGS: Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9-77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0-90·2) in the 74 Gy group, 90·6% (88·5-92·3) in the 60 Gy group, and 85·9% (83·4-88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68-1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99-1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported.

INTERPRETATION: Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer.

FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the scored Patient-generated Subjective Global Assessment (PG-SGA) tool as an outcome measure in clinical nutrition practice and determine its association with quality of life (QoL). DESIGN: A prospective 4 week study assessing the nutritional status and QoL of ambulatory patients receiving radiation therapy to the head, neck, rectal or abdominal area. SETTING: Australian radiation oncology facilities. SUBJECTS: Sixty cancer patients aged 24-85 y. INTERVENTION: Scored PG-SGA questionnaire, subjective global assessment (SGA), QoL (EORTC QLQ-C30 version 3). RESULTS: According to SGA, 65.0% (39) of subjects were well-nourished, 28.3% (17) moderately or suspected of being malnourished and 6.7% (4) severely malnourished. PG-SGA score and global QoL were correlated (r=-0.66, P<0.001) at baseline. There was a decrease in nutritional status according to PG-SGA score (P<0.001) and SGA (P<0.001); and a decrease in global QoL (P<0.001) after 4 weeks of radiotherapy. There was a linear trend for change in PG-SGA score (P<0.001) and change in global QoL (P=0.003) between those patients who improved (5%) maintained (56.7%) or deteriorated (33.3%) in nutritional status according to SGA. There was a correlation between change in PG-SGA score and change in QoL after 4 weeks of radiotherapy (r=-0.55, P<0.001). Regression analysis determined that 26% of the variation of change in QoL was explained by change in PG-SGA (P=0.001). CONCLUSION: The scored PG-SGA is a nutrition assessment tool that identifies malnutrition in ambulatory oncology patients receiving radiotherapy and can be used to predict the magnitude of change in QoL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the title compound, C8H12NO+ C7H3N2O6-, the anilinium and hydroxyl protons of the cation result in N-H...O, N-H..(O,O) and O-H...O hydrogen-bonding interactions with carboxylate O atom acceptors, forming a two-dimensional network structure. An intermolecular C-H...O interaction is also present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the structure of the title compound C8H12NO+ C7H5O6S- . H2O, from the reaction of 2-(4-aminophenyl)ethanol with 5-sulfosalicylic acid, the cations form head-to-tail hydrogen-bonded chains through C1/1(9) anilinium N+-H...O(hydroxyl} interactions while the anions also form similar but C1/1(8)-linked chains through carboxylic acid O-..O(sulfonate) interactions. The chains inter-associate through a number of N-H...O and O-H...O bridging interactions giving a two-dimensional array in the ab plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.