1000 resultados para 260301 Geochronology and Isotope Geochemistry
Resumo:
Oxygen and hydrogen isotope analyses of rainfall samples collected on the eastern Batinah coastal plain of northern Oman between 1995 and 1998 indicate two different principal water vapor sources for precipitation in the area: a northern, Mediterranean source and a southern, Indian Ocean source. As a result, two new local meteoric water lines were defined for the study area. Isotopic analyses of groundwater samples from over 200 springs and wells indicate that the main source of water to the Batinah coastal alluvial aquifer is high-altitude rainfall from the adjacent Jabal Akhdar Mountains, originating from a combination of northern and southern moisture sources. The groundwater recharged at high-altitude forms two plumes of water which is depleted in the heavy isotopes 18O and 2H and stretches from the mountains across the coastal plain to the sea, thereby retaining a chemical homogeneity horizontally and vertically down to a depth exceeding 300 m. In contrast, in areas adjacent to these two plumes the alluvial aquifer is geochemically stratified. Near the coast, saline intrusion results in abrupt changes in chloride concentrations and isotope values.
Resumo:
Petrographic observation and carbonate mineralogic and stable isotopic investigation were conducted on lower Oligocene to middle Miocene sediments recovered during Ocean Drilling Program Leg 182 from Site 1132, located at a water depth of 218.5 m immediately seaward of the shelf-slope break of the eastern Eyre Terrace in the western Great Australian Bight. The middle Miocene section consists of bioclastic packstone and grainstone with an interval of partially silicified nannofossil-foraminiferal chalk and is slightly to densely dolomitized. By contrast, the lower Oligocene to lower Miocene section is characterized by a predominance of planktonic and benthic foraminifers, high porosity, absence of chert, and weak dolomitization. The carbon and oxygen isotopic composition of calcites and dolomites between two sections, however, shows no significant difference.
Resumo:
Strontium concentrations and 87Sr/86Sr values were measured on pore-water and sedimentary carbonate samples from sediments recovered at Sites 1049-1053 on the Blake Spur during Ocean Drilling Program Leg 171B. These sites form a 40-km-long depth transect extending along the crest of the Blake Spur from near the upper edge of the Blake Escarpment (a steep cliff composed of Mesozoic carbonates) westward toward the interior of the Blake-Bahama Platform. Although these sites were selected for paleoceanographic purposes, they also form a hydrologic transect across the upper eastern flank of the Blake-Bahama Platform. Here, we use pore-water strontium concentrations and isotopes as a proxy to define patterns of fluid movement through the flanks of this platform. Pore-water strontium concentration increases with depth at all sites implying that strontium has been added during sediment burial and diagenesis. The isotopic values decrease from seawater-like values in the shallow samples (~0.70913) to values as low as 0.707342 in one of the deepest samples (~625 meters below seafloor). The change in pore-water strontium isotopic values is independent of the strontium isotopic compositions predicted from the host sediment age and measured on bulk carbonate in some samples. In most cases the difference between predicted sediment strontium isotopic composition and measured value is less than ±2 about the mean of the measured strontium value. Both the increase in concentration and the decrease in the strontium isotope values with increasing depth indicate that strontium was expelled from older carbonates. The strontium concentration and isotope profiles vary between sites according to their proximity to the Blake-Bahama Platform edge. Profiles from Site 1049 (nearest the platform edge) show the greatest amount of mixing with modern seawater, whereas the site most distal to the platform edge (Site 1052) shows the most significant influence of older, deeper carbonates on the pore-water strontium isotopic composition.
Resumo:
Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5? increase with decreasing age. Py-GC and elemental (C=N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen delta13C from that of other factors (bacterial degradation, sea surface temperature, DIC delta13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean-atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.
Resumo:
Lithium isotopic compositions of hydrothermally altered sediments of Deep Sea Drilling Project (DSDP) site 477/477A, as well as high temperature vent fluids of the Guaymas Basin, have been determined to gain an understanding of lithium exchange during fluid-sediment interaction at this sediment-covered spreading center. Unaltered turbidite of the basin has a d6Li value of -10%, 5-7% heavier than fresh oceanic basalts. Contact metamorphism induced by a shallow sill intrusion results in a decrease of the lithium content of the adjacent sediments and a lighter isotopic value (-8%). Below the sill, sediments altered by a deep-seated hydrothermal system show strong depletions in lithium, while lithium isotopic compositions vary greatly, ranging from -11 to +1%. The shift to lighter composition is the result of preferential retention of the lighter isotope in recrystallized phases after destruction of the primary minerals. The complexity of the isotope profile is attributed to inhomogeneity in mineral composition, the tortuous pathway of fluids and the temperature effect on isotopic fractionation. The range of lithium concentration and d6Li values for the vent fluids sampled in 1982 and 1985 overlaps with that of the sediment-free mid-ocean ridge systems. The lack of a distinct expression of sediment input is explained in terms of a flow-through system with continuous water recharge. The observations on the natural system agree well with the results of laboratory hydrothermal experiments. The experimental study demonstrates the importance of temperature, pressure, water/rock ratio, substrate composition and reaction time on the lithium isotopic composition of the reacted fluid. High temperature authigenic phases do not seem to constitute an important sink for lithium and sediments of a hydrothermal system such as Guaymas are a source of lithium to the ocean. The ready mobility of lithium in the sediment under elevated temperature and pressure conditions also has important implications for lithium cycling in subduction zones.
Resumo:
The first and last appearances of Quaternary planktonic foraminifers in the Great Australian Bight were evaluated using datum levels from magnetostatigraphy, oxygen isotope stratigraphy, and calcareous nannofossil biostratigraphy to determine whether they were synchronous or diachronous with open-ocean biostratigraphic events. The first appearance of Globorotalia truncatulinoides is diachronous at 1.6-1.7 Ma at Site 1127 and 1.1-1.2 at Sites 1129 and 1132, similar to other local appearances in high latitudes. All other datum levels, however, are synchronous with open-ocean events, including the first appearance of Globorotalia hirsuta and the last appearances of Globorotalia tosaensis and pink Globigerinoides ruber in the Indo-Pacific region. A local reappearance of Gt. hirsuta at ~0.12 Ma and the disappearance of Globorotalia crassaformis at ~0.10 Ma were found to be useful for local biostratigraphy. Age control at the bottom of all of the sections is poor at this time, but results suggest that sedimentation recommenced starting at ~1.9 Ma above the regional unconformity that marks the base of seismostratigraphic Sequence 2. Sediment accumulation is distinctly reduced in the lower Pleistocene compared to the upper Pleistocene, perhaps in part because of processes associated with several omission surfaces.
Resumo:
Stable isotope analyses and scanning electron micrographs have been carried out on six planktonic forminifera species, Pulleniatina obliquiloculata, Globorotalia tumida, Sphaeroidinella dehiscens, Globigerinoides ruber, Globigerinoides sacculifer and Globigerinoides quadrilobatus from eleven box-cores taken at increasing depths in the equatorial Ontong-Java Plateau (Pacific). This allows us to describe the way dissolution affects the microstructures of the tests of the different species and to quantify the changes of isotopic composition. We may conclude that: 1) dissolution effects on test morphology and stable isotope compositions are species dependent, species with a similar habitat showing a similar trend; 2) the shallow water, thin-shelled species are the first to disappear: scanning electron microscope (SEM) work shows alteration of outer layers. Deep water, thick-shelled species are present in all samples: SEM work shows breakdown and disparition of inner layers; 3) for all species there is a similar trend towards increasing delta18O values with increasing water depths and increasing dissolution. This effect may be as high as 0.6 ? per thousand meters for Globorotalia tumida; 4) below the lysocline, around 3500 m, it appears that 13C/12C ratios slightly increase towards equilibrium values for thick shelled species: G. tumida, P. obliquiloculata and S. dehiscens. 14C dates and isotope stratigraphy of two box-cores show that all samples are recent in age, and exclude upward mixing of glacial deposits as an important factor.
Resumo:
The elemental (C, N, and P) and isotope (δ13C, δ15N) content of leaves of the seagrasses Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were measured across a 10 000 km2 survey of the seagrass communities of South Florida, USA, in 1999 and 2000. Trends at local and broad spatial scales were compared to examine interspecific variation in the seagrass characteristics often used as ecological indicators. The elemental and stable isotope contents of all species were variable and demonstrated marked interspecific variation. At broad spatial scales, mean N:P ratios were lowest for T. testudinum (36.5 ± 1.1) and S. filiforme (38.9 ± 1.3), and highest for H. wrightii (44.1 ± 1.8). Stable carbon isotope ratios (δ13C) were highest for S. filiforme (–6.2 ± 0.2‰), intermediate for T. testudinum (–8.6 ± 0.2‰), and lowest for H. wrightii (–10.6 ± 0.3‰). Stable nitrogen isotopes (δ15N) were heaviest for T. testudinum (2.0 ± 0.1‰), and lightest for H. wrightii (1.0 ± 0.3‰) and S. filiforme (1.6 ± 0.2‰). Site depth was negatively correlated to δ13C for all species, while δ15N was positively correlated to depth for H. wrightii and S. filiforme. Similar trends were observed in local comparisons, suggesting that taxon-specific physiological/ecological properties strongly control interspecific variation in elemental and stable isotope content. Temporal trends in δ13C were measured, and revealed that interspecific variation was displayed throughout the year. This work documents interspecific variation in the nutrient dynamics of 3 common seagrasses in South Florida, indicating that interpretation of elemental and stable isotope values needs to be species specific.
Resumo:
The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.