952 resultados para 230109 Functional Analysis
Resumo:
This paper presents two case studies that suggest, in different but complementary ways, that the critical tool of frame analysis (Entman, 2002) has a place not only in the analytical environments of critical media research and media studies classes, where it is commonly found, but also in the media-production oriented environments of skills-based journalism training and even the newsroom. The expectations and constraints of both the latter environments, however, necessitate forms of frame analysis that are quick and simple. While commercial pressures mean newsrooms and skills-based journalism-training environments are likely to allow only an oversimplified approach to frame analysis, we argue that even a simple understanding and analysis at the production end could help to shift framing in ways that not only improve the quality and depth of Australasian newspapers' news coverage, but increase reader satisfaction with media output.
Resumo:
The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.
Resumo:
X-ray photoelectron spectroscopy (XPS) can play an important role in guiding the design of new materials, tailored to meet increasingly stringent constraints on performance devices, by providing insight into their surface compositions and the fundamental interactions between the surfaces and the environment. This chapter outlines the principles and application of XPS as a versatile, chemically specific analytical tool in determining the electronic structures and (usually surface) compositions of constituent elements within diverse functional materials. Advances in detector electronics have opened the way for development of photoelectron microscopes and instruments with XPS imaging capabilities. Advances in surface science instrumentation to enable time-resolved spectroscopic measurements offer exciting opportunities to quantitatively investigate the composition, structure and dynamics of working catalyst surfaces. Attempts to study the effects of material processing in realistic environments currently involves the use of high- or ambient-pressure XPS in which samples can be exposed to reactive environments.
Resumo:
In the present state of the art of authorship attribution there seems to be an opposition between two approaches: cognitive and stylistic methodologies. It is proposed in this article that these two approaches are complementary and that the apparent gap between them can be bridged using Systemic Functional Linguistics (SFL) and in particular some of its theoretical constructions, such as codal variation. This article deals with the theoretical explanation of why such a theory would solve the debate between the two approaches and shows how these two views of authorship attribution are indeed complementary. Although the article is fundamentally theoretical, two example experimental trials are reported to show how this theory can be developed into a workable methodology of doing authorship attribution. In Trial 1, a SFL analysis was carried out on a small dataset consisting of three 300-word texts collected from three different authors whose socio-demographic background matched across a number of parameters. This trial led to some conclusions about developing a methodology based on SFL and suggested the development of another trial, which might hint at a more accurate and useful methodology. In Trial 2, Biber's (1988) multidimensional framework is employed, and a final methodology of authorship analysis based on this kind of analysis is proposed for future research. © 2013, EQUINOX PUBLISHING.
Resumo:
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A
Resumo:
Relation between dermatoglyphic signs and temperaments types is considered. An algorithm for papillary patterns classification and Izenk’s two factors model are used for establishment relationship asymmetry signs with psychic functional state of human’s organism.
Resumo:
Background: Recent morpho-functional evidence pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brainstem remains to be determined. We used a Functional Source Separation algorithm of EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura (MO) patients. Methods: Twenty MO patients and 20 healthy volunteers (HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brainstem and FS16 at thalamic level) and two cortical (FS20 radial and FS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450-750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced sub-cortical brainstem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between the two groups. Conclusions: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergic system may underline the interictal cortical abnormal information processing in migraine. Further studies are needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO. Written informed consent to publication was obtained from the patient(s).
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient's extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.^
Resumo:
Understanding pathways of neurological disorders requires extensive research on both functional and structural characteristics of the brain. This dissertation introduced two interrelated research endeavors, describing (1) a novel integrated approach for constructing functional connectivity networks (FCNs) of brain using non-invasive scalp EEG recordings; and (2) a decision aid for estimating intracranial volume (ICV). The approach in (1) was developed to study the alterations of networks in patients with pediatric epilepsy. Results demonstrated the existence of statistically significant (p