993 resultados para 207-1257B


Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"October 1966."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 207, on the Demerara Rise in the western tropical North Atlantic, recovered multiple Cretaceous-Paleogene boundary sections containing an ejecta layer. Sedimentological, geochemical, and paleontological changes across the boundary closely match patterns expected for a mass extinction caused by a single impact. A normally graded, ~2-cm-thick bed of spherules that is interpreted as a primary air-fall deposit of impact ejecta occurs between sediments of the highest Cretaceous Plummerita hantkeninoides foraminiferal zone and the lowest Paleogene P0 foraminiferal zone. There are no other spherule layers in the section. In addition to extinction of Cretaceous taxa, foraminiferal abundance drops from abundant to rare across the boundary. Ir concentrations reach a maximum of ~1.5 ppb at the top of the spherule bed, and the Ir anomaly is associated with enrichment in other siderophile elements. We attribute the unusually well-preserved and relatively simple stratigraphy to the fact that Demerara Rise was close enough (~4500 km) to the Chicxulub impact site to receive ~2 cm of ejecta, yet was far enough away (and perhaps sheltered by the curve of northern South America) to have been relatively unaffected by impact-induced waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.