991 resultados para 15-147
Resumo:
This work aims to investigate and quantitatively measure “liquid marble” phenomena using hydrophobic powders (granules). The hydrophobic powders based on a copper substrate were prepared by a silver deposition technique of particle sizes 9 µm, 20 µm and 320 µm and of contact angle with water approaching 160°. The hydrophobic powder poly-methylmethacralate (PMMA) particle size 42 µm and contact angle of 120° was also used to determine the effect of powder density on liquid marble stability. The experimental investigations indicated that for successful formation of liquid marbles a number of variables in addition to hydrophobicity need to be considered, namely: powder density; powder particle size; powder shape; liquid marble formation technique. It was found that liquid marbles were formed using all four powders to varying extents, with a low powder particle size forming more stable liquid marbles. In a series of gravimetric tests, adhered powder mass on liquid marbles was found to be directly proportional to the water droplet surface area. A more complete coverage of the water drops were found with PMMA powder than the hydrophobic granules. Moreover, a further procedure was developed to increase the mechanical strength of the liquid marble, by polymerising methylmethacrylate (MMA) on the surface of a PMMA powder – liquid marble, with the aim of maintaining water within a more robust PMMA – liquid marble shell. This technique may prove to be a novel way of encapsulating drug compounds, such as gentamicin sulphate, for PMMA bone cement.
Resumo:
The formation of pentanuclear copper(ii) complexes with the mandelohydroxamic ligand was studied in solution by electrospray ionization mass spectrometry (ESI-MS), absorption spectrophotometry, circular dichroism and H-1 NMR spectroscopy. The presence of lanthanide(iii) or uranyl ions is essential for the self-assembly of the 15-metallacrown-5 compounds. The negative mode ESI-MS spectra of solutions containing copper(II), mandelohydroxamic acid and lanthanide(iii) ions (Ln = La, Ce, Nd, Eu, Gd, Dy, Er, Tm, Lu, Y) or uranyl in the ratio 5:5:1 showed only the peaks that could be unambiguously assigned to the following intact molecular ions: {Ln(NO3)(2)[15-MCuIIN(MHA)-5](2-)}(-) and {Ln(NO3)[15-MCCuIIN(MHA)-5](3-)}(-), where MHA represents doubly deprotonated mandelohydroxamic acid. The NMR spectra of the pentanuclear species revealed only one set of peaks indicating a fivefold symmetry of the complex. The pentanuclear complexes synthesized with the enantiomerically pure R- or S-forms of mandelohydroxamic acid ligand, showed circular dichroism spectra which were mirror images of each other. The pentanuclear complex made from the racemic form of the ligand showed no signals in the CD spectrum. The UV/ Vis titration experiments revealed that the order in which the metal salts are added to the solution of the mandelohydroxamic acid ligand is crucial for the formation of metallacrown complexes. The addition of copper(ii) to the solutions containing mandelohydroxamic acid and neodymium(iii) in a 5:1 ratio lead to the formation of a pentanuclear complex in solution. In contrary, titration of lanthanide(iii) salt to the solution containing copper(ii) and mandelohydroxamic acid did not show any evidence for the formation of pentanuclear species. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
Resumo:
Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded between 0.24 mT and 1.4 T for lanthanum(III)- and gadolinium(III)-containing [15]metallacrown-5 complexes derived from alpha-aminohydroxamic acids and with copper(n) as the ring metal. The influence of the different R-groups on the proton relaxivity was investigated, and a linear relationship between the relaxivity and the molecular mass of the metallacrown complex was found. The selectivity of the metallacrown complexes was tested by transmetalation experiments with zinc(n) ions. The crystal structure of the copper [15]metallacrown-5 gadolinium complex with glycine hydroximate ligands is reported.
Resumo:
This study assessed nearshore, marine ecosystem function around Trinidad and Tobago (TT). The coastline of TT is highly complex, bordered by the Atlantic Ocean, the Caribbean Sea, the Gulf of Paria and the Columbus Channel, and subject to local terrestrial runoff and regional riverine inputs (e.g. the Orinoco and Amazon rivers). Coastal organisms can assimilate energy from allochthonous and autochthonous Sources, We assessed whether stable isotopes delta C-13 and delta N-15 Could be used to provide a rapid assessment of trophic interactions in primary consumers around the islands. Filter-feeding (bivalves and barnacles) and grazing organisms (gastropods and chitons) were collected from 40 marine sites during the wet season. The flesh of organisms was analysed for delta C-13 and delta N-15. Results indicate significant variation in primary consumers (by feeding guild and sampling zone). This variation was linked to different energy Sources being assimilated by consumers. Results suggest that offshore production is fuelling intertidal foodwebs; for example, a depleted delta C-13 signature in grazers from the Gulf of Paria, Columbus Channel and the Caribbean and Atlantic coastline of 9 Tobago indicates that carbon with an offshore origin (e.g. phytoplankton and dissolved organic matter) is more important than benthic or littoral algae (luring the wet season. Results also confirm findings from other studies indicating that much of the coastline is subject to Cultural eutrophication. This Study revealed that ecosystem function is spatially variable around the coastline of TT, This has clear implications for marine resource management, as a single management approach is unlikely to be successful at a national level.
Resumo:
In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.
Resumo:
Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.
Resumo:
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
Resumo:
The potential use of negative electrospray ionisation mass spectrometry (ESI-MS) in the characterisation of the three polyacetylenes common in carrots (Daucus carota) has been assessed. The MS scans have demonstrated that the polyacetylenes undergo a modest degree of in-source decomposition in the negative ionisation mode while the positive ionisation mode has shown predominantly sodiated ions and no [M+H](+) ions. Tandem mass spectrometric (MS/MS) studies have shown that the polyacetylenes follow two distinct fragmentation pathways: one that involves cleavage of the C3-C4 bond and the other with cleavage of the C7-C8 bond. The cleavage of the C7-C8 bond generated product ions m/z 105.0 for falcarinol, m/z 105/107.0 for falcarindiol, m/z 147.0/149.1 for falcarindiol-3-acetate. In addition to these product ions, the transitions m/z 243.2 -> 187.1 (falcarinol), m/z 259.2 -> 203.1 (falcarindiol), m/z 301.2 -> 255.2/203.1 (falcarindiol-3-acetate), mostly from the C3-C4 bond cleavage, can form the basis of multiple reaction monitoring (MRM)-quantitative methods which are poorly represented in the literature. The 'MS3' experimental data confirmed a less pronounced homolytic cleavage site between the C11-C12 bond in the falcarinol-type polacetylenes. The optimised liquid chromatography (LC)/MS conditions have achieved a baseline chromatographic separation of the three polyacetylenes investigated within 40 min total run-time. Copyright (C) 2011 John Wiley & Sons, Ltd.