969 resultados para word-formation processes
Resumo:
We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.
Resumo:
333 p.
Resumo:
L’objectif de la présente thèse est de générer des connaissances sur les contributions possibles d’une formation continue à l’évolution des perspectives et pratiques des professionnels de la santé buccodentaire. Prônant une approche centrée sur le patient, la formation vise à sensibiliser les professionnels à la pauvreté et à encourager des pratiques qui se veulent inclusives et qui tiennent compte du contexte social des patients. L’évaluation de la formation s’inscrit dans le contexte d’une recherche-action participative de développement d’outils éducatifs et de transfert des connaissances sur la pauvreté. Cette recherche-action aspire à contribuer à la lutte contre les iniquités sociales de santé et d’accès aux soins au Québec; elle reflète une préoccupation pour une plus grande justice sociale ainsi qu’une prise de position pour une santé publique critique fondée sur une « science des solutions » (Potvin, 2013). Quatre articles scientifiques, ancrés dans une philosophie constructiviste et dans les concepts et principes de l’apprentissage transformationnel (Mezirow, 1991), constituent le cœur de cette thèse. Le premier article présente une revue critique de la littérature portant sur l’enseignement de l’approche de soins centrés sur le patient. Prenant appui sur le concept d’une « épistémologie partagée », des principes éducatifs porteurs d’une transformation de perspective à l’égard de la relation professionnel-patient ont été identifiés et analysés. Le deuxième article de thèse s’inscrit dans le cadre du développement participatif d’outils de formation sur la pauvreté et illustre le processus de co-construction d’un scénario de court-métrage social réaliste portant sur la pauvreté et l’accès aux soins. L’article décrit et apporte une réflexion, notamment sur la dimension de co-formation entre les différents acteurs des milieux académique, professionnel et citoyen qui ont constitué le collectif À l’écoute les uns des autres. Nous y découvrons la force du croisement des savoirs pour générer des prises de conscience sur soi et sur ses préjugés. Les outils développés par le collectif ont été intégrés à une formation continue axée sur la réflexion critique et l’apprentissage transformationnel, et conçue pour être livrée en cabinet dentaire privé. Les deux derniers articles de thèse présentent les résultats d’une étude de cas instrumentale évaluative centrée sur cette formation continue et visant donc à répondre à l’objectif premier de cette thèse. Le premier consiste en une analyse des transformations de perspectives et d’action au sein d’une équipe de 15 professionnels dentaires ayant participé à la formation continue sur une période de trois mois. L’article décrit, entre autres, une plus grande ouverture, chez certains participants, sur les causes structurelles de la pauvreté et une plus grande sensibilité au vécu au quotidien des personnes prestataires de l’aide sociale. L’article comprend également une exploration des effets paradoxaux dans l’apprentissage, notamment le renforcement, chez certains, de perceptions négatives à l’égard des personnes prestataires de l’aide sociale. Le quatrième article fait état de barrières idéologiques contraignant la transformation des pratiques professionnelles : 1) l’identification à l’idéologie du marché privé comme véhicule d’organisation des soins; 2) l’attachement au concept d’égalité dans les pratiques, au détriment de l’équité; 3) la prédominance du modèle biomédical, contraignant l’adoption de pratiques centrées sur la personne et 4) la catégorisation sociale des personnes prestataires de l’aide sociale. L’analyse des perceptions, mais aussi de l’expérience vécue de ces barrières démontre comment des facteurs systémiques et sociaux influent sur le rapport entre professionnel dentaire et personne prestataire de l’aide sociale. Les conséquences pour la recherche, l’éducation dentaire, le transfert des connaissances, ainsi que pour la régulation professionnelle et les politiques de santé buccodentaire, sont examinées à partir de cette perspective.
Resumo:
Laboratory chamber experiments are used to investigate formation of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors under a variety of environmental conditions. Simulations of these experiments test our understanding of the prevailing chemistry of SOA formation as well as the dynamic processes occurring in the chamber itself. One dynamic process occurring in the chamber that was only recently recognized is the deposition of vapor species to the Teflon walls of the chamber. Low-volatility products formed from the oxidation of volatile organic compounds (VOCs) deposit on the walls rather than forming SOA, decreasing the amount of SOA formed (quantified as the SOA yield: mass of SOA formed per mass of VOC reacted). In this work, several modeling studies are presented that address the effect of vapor wall deposition on SOA formation in chambers.
A coupled vapor-particle dynamics model is used to examine the competition among the rates of gas-phase oxidation to low volatility products, wall deposition of these products, and mass transfer to the particle phase. The relative time scales of these rates control the amount of SOA formed by affecting the influence of vapor wall deposition. Simulations show that an effect on SOA yield of changing the vapor-particle mass transfer rate is only observed when SOA formation is kinetically limited. For systems with kinetically limited SOA formation, increasing the rate of vapor-particle mass transfer by increasing the concentration of seed particles is an effective way to minimize the effect of vapor wall deposition.
This coupled vapor-particle dynamics model is then applied to α-pinene ozonolysis SOA experiments. Experiments show that the SOA yield is affected when changing the oxidation rate but not when changing the rate of gas-particle mass transfer by changing the concentration of seed particles. Model simulations show that the absence of an effect of changing the seed particle concentration is consistent with SOA formation being governed by quasi-equilibrium growth, in which gas-particle equilibrium is established much faster than the rate of change of the gas-phase concentration. The observed effect of oxidation rate on SOA yield arises due to the presence of vapor wall deposition: gas-phase oxidation products are produced more quickly and condense preferentially onto seed particles before being lost to the walls. Therefore, for α-pinene ozonolysis, increasing the oxidation rate is the most effective way to mitigate the influence of vapor wall deposition.
Finally, the detailed model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to simulate α-pinene photooxidation SOA experiments. Unexpectedly, α-pinene OH oxidation experiments show no effect when changing either the oxidation rate or the vapor-particle mass transfer rate, whereas GECKO-A predicts that changing the oxidation rate should drastically affect the SOA yield. Sensitivity studies show that the assumed magnitude of the vapor wall deposition rate can greatly affect conclusions drawn from comparisons between simulations and experiments. If vapor wall loss in the Caltech chamber is of order 10-5 s-1, GECKO-A greatly overpredicts SOA during high UV experiments, likely due to an overprediction of second-generation products. However, if instead vapor wall loss in the Caltech chamber is of order 10-3 s-1, GECKO-A greatly underpredicts SOA during low UV experiments, possibly due to missing autoxidation pathways in the α-pinene mechanism.
Resumo:
The scope of this dissertation is to study the transport phenomena of small molecules in polymers and membranes for gas separation applications, with particular attention to energy efficiency and environmental sustainability. This work seeks to contribute to the development of new competitive selective materials through the characterization of novel organic polymers such as CANALs and ROMPs, as well as through the combination of selective materials obtaining mixed matrix membranes (MMMs), to make membrane technologies competitive with the traditional ones. Kinetic and thermodynamic aspects of the transport properties were investigated in ideal and non-ideal scenarios, such as mixed-gas experiments. The information we gathered contributed to the development of the fundamental understanding related to phenomenon like CO2-induced plasticization and physical aging. Among the most significant results, ZIF-8/PPO MMMs provided materials whose permeability and selectivity were higher than those of the pure materials for He/CO2 separation. The CANALs featured norbornyl benzocyclobutene backbone and thereby introduced a third typology of ladder polymers in the gas separation field, expanding the structural diversity of microporous materials. CANALs have a completely hydrocarbon-based and non-polar rigid backbone, which makes them an ideal model system to investigate structure-property correlations. ROMPs were synthesized by means of the ring opening metathesis living polymerization, which allowed the formation of bottlebrush polymers. CF3-ROMP reveled to be ultrapermeable to CO2, with unprecedented plasticization resistance properties. Mixed-gas experiments in glassy polymer showed that solubility-selectivity controls the separation efficiency of materials in multicomponent conditions. Finally, it was determined that plasticization pressure in not an intrinsic property of a material and does not represent a state of the system, but rather comes from the contribution of solubility coefficient and diffusivity coefficient in the framework of the solution-diffusion model.
Resumo:
The discovery of scaling relations between the mass of the SMBH and some key physical properties of the host galaxy suggests that the growth of the SMBH and that of the galaxy are coupled, with the AGN activity and the star-formation (SF) processes influencing each other. Although the mechanism of this co-evolution are still a matter of debate, all scenarios agree that a key phase of the co-evolution is represented by the obscured accretion phase. This phase is of the co-evolution is the least studied, mostly due to the challenge in detecting and recognizing such obscured AGN. My thesis aims at investigating the AGN-galaxy co-evolution paradigm by identifying and studying AGN in the obscured accretion phase. The study of obscured AGN is key for our understanding of the feedback processes and of the mutual influence of the SF and the AGN activity. Moreover, these obscured and elusive AGN are needed to explain the X-ray background spectrum and to reconcile the measurements and the theoretical prediction of the BH accretion rate density. In this thesis, we firstly investigate the synergies between IR and X-ray missions in detecting and characterizing AGN, with a particular focus on the most obscured ones. We exploited UV/optical emission lines to select high-redshift obscured AGN at the cosmic noon, where the highest SFR density and BH accretion rate density are expected. We provide X-ray spectral analysis and UV-to-far-IR SED-fitting. We show that our samples host a significant fraction of very obscured sources; many of these are highly accreting. Finally, we performe a thoughtful investigation of a galaxy at z~5 with unusual and peculiar features, that lead us to identify a second extremely young population of stars and hidden AGN activity.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Hydroxyurea (HU), or hydroxycarbamide, is used for the treatment of some myeloproliferative and neoplastic diseases, and is currently the only drug approved by the FDA for use in sickle cell disease (SCD). Despite the relative success of HU therapy for SCD, a genetic disorder of the hemoglobin β chain that results in red-cell sickling, hemolysis, vascular inflammation and recurrent vasoocclusion, the exact mechanisms by which HU actuates remain unclear. We hypothesized that HU may modulate endothelial angiogenic processes, with important consequences for vascular inflammation. The effects of HU (50-200 μM; 17-24 h) on endothelial cell functions associated with key steps of angiogenesis were evaluated using human umbilical vein endothelial cell (HUVEC) cultures. Expression profiles of the HIF1A gene and the miRNAs 221 and 222, involved in endothelial function, were also determined in HUVECs following HU administration and the direct in vivo antiangiogenic effects of HU were assessed using a mouse Matrigel-plug neovascularization assay. Following incubation with HU, HUVECs exhibited high cell viability, but displayed a significant 75% inhibition in the rate of capillary-like-structure formation, and significant decreases in proliferative and invasive capacities. Furthermore, HU significantly decreased HIF1A expression, and induced the expression of miRNA 221, while downregulating miRNA 222. In vivo, HU reduced vascular endothelial growth factor (VEGF)-induced vascular development in Matrigel implants over 7 days. Findings indicate that HU is able to inhibit vessel assembly, a crucial angiogenic process, both in vitro and in vivo, and suggest that some of HU's therapeutic effects may occur through novel vascular mechanisms.
Resumo:
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.
Resumo:
Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.
Resumo:
A 46-year-old woman complained of blurred and distorted vision in both eyes. Ophthalmic examination showed that visual acuity was 20/200 for the right eye and counting fingers left eye. Fundoscopy revealed perimacular hemorrhages, aneurismal dilatation of the vessels in the posterior pole, and a white and elevated lesion adjacent to vascular changes. We report a case of idiopathic macular telangiectasia and epiretinal membrane that occurs concomitantly. To our knowledge, this is the first report that describes an association between idiopathic macular telangiectasia and epiretinal membrane formation.
Resumo:
99
Resumo:
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.