813 resultados para wireless networks user-centric networking
Resumo:
Costly on-site node repairs in wireless mesh networks (WMNs) can be required due to misconfiguration, corrupt software updates, or unavailability during updates. We propose ADAM as a novel management framework that guarantees accessibility of individual nodes in these situations. ADAM uses a decentralised distribution mechanism and self-healing mechanisms for safe configuration and software updates. In order to implement the ADAM management and self-healing mechanisms, an easy-to-learn and extendable build system for a small footprint embedded Linux distribution for WMNs has been developed. The paper presents the ADAM concept, the build system for the Linux distribution and the management architecture.
Resumo:
The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.
Resumo:
Over the past several years, a number of design approaches in wireless mesh networks have been introduced to support the deployment of wireless mesh networks (WMNs). We introduce a novel wireless mesh architecture that supports authentication and authorisation functionalities, giving the possibility of a seamless WMN integration into the home's organization authentication and authorisation infrastructure. First, we introduce a novel authentication and authorisation mechanism for wireless mesh nodes. The mechanism is designed upon an existing federated access control approach, i.e. the AAI infrastructure that is using just the credentials at the user's home organization in a federation. Second, we demonstrate how authentication and authorisation for end users is implemented by using an existing web-based captive portal approach. Finally, we observe the difference between the two and explain in detail the process flow of authorized access to network resources in wireless mesh networks. The goal of our wireless mesh architecture is to enable easy broadband network access to researchers at remote locations, giving them additional advantage of a secure access to their measurements, irrespective of their location. It also provides an important basis for the real-life deployment of wireless mesh networks for the support of environmental research.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
Using multicast communication in Wireless Sensor Networks (WSNs) is an efficient way to disseminate the same data (from one sender) to multiple receivers, e.g., transmitting code updates to a group of sensor nodes. Due to the nature of code update traffic a multicast protocol has to support bulky traffic and end-to-end reliability. We are interested in an energy-efficient multicast protocol due to the limited resources of wireless sensor nodes. Current data dissemination schemes do not fulfill the above requirements. In order to close the gap, we designed and implemented the SNOMC (Sensor Node Overlay Multicast) protocol. It is an overlay multicast protocol, which supports reliable, time-efficient, and energy-efficient data dissemination of bulky data from one sender to many receivers. To ensure end-to-end reliability, SNOMC uses a NACK-based reliability mechanism with different caching strategies.