987 resultados para wet chemical precipitation
Resumo:
Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.
Resumo:
Distriburtion and formation of clay minerals in different types of bottom sediments from the West Pacific are under consideration.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
The paper presents data on authigenic carbonate distribution in Holocene - Upper Pleistocene deposits of the Okhotsk, Japan, East China, Philippine and South China Seas. Description of carbonate samples, their chemical and isotope compositions are given. Chemical analysis of the samples indicates that almost all authigenic carbonates are composed of calcite or magnesian calcite; and only in one case, of siderite. Oxygen isotopic composition (d18O) ranges from +37.7 to +26.1 per mil (SMOW); it is, probably, connected with different temperatures of carbonate formation. A distinct geographic regularity is traced. Decrease in d18O values is observed from the cold Okhotsk Sea to the warm South China Sea. A very wide range of carbon isotopic composition (d13C from -42 to +3.8 per mil) indicates different sources of carbonic acid required for formation of these carbonates. As a basis for carbon isotopic composition we can distinguish three sources of carbonic acid in the studied sediments: microbiological methane oxidation, organic matter destruction during sediment diagenesis, and dissolved organogenic limestone. Thus, formation of authigenic carbonates in sediments from the marginal seas of the Northwest Pacific results from: 1) sediment diagenesis, 2) methane oxidation in zones of gas anomalies, 3) their precipitation from the supersaturated by carbonates sea shoal waters of tropical sea lagoons.
Resumo:
In fault zones of the East Indian Ridge and adjacent areas of ocean floor almost monomineral sepiolite- and palygorskite clays have been found. They have been studied by a complex of optical and physical methods. Formation of authigenic sepiolites and palygorskite had occurred under influence of Mg- and Si-rich hydrothermal solutions by metasomatic replacement of montmorillonite clays, or by precipitation from saturated solutions in cracks of various rocks.
Resumo:
Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.
Resumo:
Authigenic carbonates in the caldera of an Arctic (72°N) submarine mud volcano with active methane-bearing fluid discharge are formed at the bottom surface during anaerobic microbial methane oxidation. The microbial community consists of specific methane-producing bacteria, which act as methanotrophic ones in conditions of excess methane, and sulfate reducers developing on hydrogen, which is an intermediate product of microbial CH4 oxidation. Isotopically light carbon (aver. d13C = -28.9 per mil) of CO2 produced during CH4 oxidation is the main carbonate carbon source. Heavy oxygen isotope ratio (aver. d18O = 5 per mil) in carbonates is inherited from seawater sulfate. Rapid sulfate reduction (up to 12 mg S/dm**3/day) results in total exhausting of sulfate ion in the upper sediment layer (10 cm). Because of this carbonates can only be formed in surface sediments near the water-bottom interface. Salinity as well as CO3/Ca and Mg/Ca ratios correspond to the field of non-magnesian calcium carbonate precipitation. Calcite is the dominant carbonate mineral in the methane seep caldera, where it occurs in the paragenetic association with barite. Radiocarbon age of carbonates is about 10 Ka.
Resumo:
The Snake Pit hydrothermal field is located on the top of a neovolcanic rise on the Mid-Atlantic Ridge at sea depths between 3460 and 3510 m. It was surveyed during several oceanological expeditions including DSDP Legs. Additional scientific materials were obtained in 2002 and 2003 during expedition onboard R/V Akademik Mstislav Keldysh with two Mir deep-sea manned submersibles. Three eastern hydrothermal mounds (Moose, Beehive, and Fir Tree) are located on the upper part of the eastern slope of the rise over a common fractured pedestal composed of fragments of massive sulfides. The western group of hydrothermal deposits is encountered on the western slope of the axial graben. Within this mature hydrothermal field, which was formed over the past 4000 years, we studied morphology of the hydrothermal mounds, chemistry and mineralogy of hydrothermal deposits, chemistry of sulfide minerals, and isotope composition of sulfur in them.
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.
Resumo:
Ferromanganese concretions spread out on the bottom of the shallow northwest part of the Black Sea are mainly represented by Fe and Mn nodules on shells and substituted worm tubes. Element composition of these formations was measured by methods of chemical, atomic absorbtion, neutron activation, and ICP-MS analyses. It was established that Fe and Mn contents and Mn/Fe ratio in the concretions varied considerably and which controlled occurrence of several associated metals and minor elements; some of them have not been studied in Black Sea concretions before.
Resumo:
On the bed and on the ocean slope of the southern latitudinal part of the Mariana Trench ancient sediments, as well as sedimentary and igneous rocks are exposed. In the lower part of the sampled part of the studied section Late Oligocene to Early Miocene chalk-like limestones and marls occur. Upward marly tuffites and tuffs (apparently alternating with carbonate rocks) occur. These rocks are overlain by Early Miocene tuffaceous clays and siliceous-clayey muds. In the upper part of the section there are Pleistocene pelagic clays and ethmodiscus oozes.