986 resultados para viral genome
Resumo:
A new member of the phlebovirus genus, tentatively named Granada virus, was detected in sandflies collected in Spain. By showing the presence of specific neutralizing antibodies in human serum collected in Granada, we show that Granada virus infects humans. The analysis of the complete genome of Granada virus revealed that this agent is likely to be a natural reassortant of the recently described Massilia virus (donor of the long and short segments) with ayet unidentified phlebovirus (donor of the medium segment)
Resumo:
Objective: The purpose of this study was to find loci for major depression via linkage analysis of a large sibling pair sample. Method: The authors conducted a genome-wide linkage analysis of 839 families consisting of 971 affected sibling pairs with severe recurrent major depression, comprising waves I and II of the Depression Network Study cohort. In addition to examining affected status, linkage analyses in the full data set were performed using diagnoses restricted by impairment severity, and association mapping of hits in a large case-control data set was attempted. Results: The authors identified genome-wide significant linkage to chromosome 3p25-26 when the diagnoses were restricted by severity, which was a maximum LOD score of 4.0 centered at the linkage marker D3S1515. The linkage signal identified was genome-wide significant after correction for the multiple phenotypes tested, although subsequent association mapping of the region in a genome-wide association study of a U.K. depression sample did not provide significant results. Conclusions: The authors report a genome-wide significant locus for depression that implicates genes that are highly plausible for involvement in the etiology of recurrent depression. Despite the fact that association mapping in the region was negative, the linkage finding was replicated by another group who found genome-wide-significant linkage for depression in the same region. This suggests that 3p25-26 is a new locus for severe recurrent depression. This represents the first report of a genome-wide significant locus for depression that also has an independent genome-wide significant replication.
Resumo:
Hepatitis C virus (HCV) is a positive-strand RNA virus that replicates its genome in a membrane-associated replication complex. Nonstructural protein 4B (NS4B) induces the specific membrane alteration, designated as membranous web (MW), that harbours this complex. HCV NS4B is an integral membrane protein predicted to comprise four transmembrane segments in its central part. The N-terminal part comprises two amphipathic alpha-helices of which the second has the potential to traverse the membrane bilayer, likely upon oligomerisation. The C-terminal part comprises a predicted highly conserved alpha-helix, a membrane-associated amphipathic alpha-helix and two reported palmitoylation sites. NS4B interacts with other viral nonstructural proteins and has been reported to bind viral RNA. In addition, it was found to harbour an NTPase activity. Finally, NS4B has recently been found to have a role in viral assembly. Much work needs to be done with respect to further dissecting these multiple functions as well as providing a refined membrane topology and complete structure of NS4B. Progress in this direction should yield important insights into the functional architecture of the HCV replication complex and may reveal new opportunities for antiviral intervention against a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide.
Resumo:
The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.
Resumo:
The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.
Resumo:
Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome-wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome-wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single-nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10(-7)). These two SNPs were in high linkage disequilibrium (r(2) = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 x 10(-5)) was to an SNP within CDH13, whose protein product is a newly identified receptor for high-molecular-weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.
Resumo:
In this paper we review the impact that the availability of the Schistosoma mansoni genome sequence and annotation has had on schistosomiasis research. Easy access to the genomic information is important and several types of data are currently being integrated, such as proteomics, microarray and polymorphic loci. Access to the genome annotation and powerful means of extracting information are major resources to the research community.
Resumo:
In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.
Resumo:
BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.
Resumo:
Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus).
Resumo:
The goal of this study was to evaluate changes in plasma human immunodeficiency virus (HIV) RNA concentration [viral load (VL)] and CD4+ percentage (CD4%) during 6-12 weeks postpartum (PP) among HIV-infected women and to assess differences according to the reason for receipt of antiretrovirals (ARVs) during pregnancy [prophylaxis (PR) vs. treatment (TR)]. Data from a prospective cohort of HIV-infected pregnant women (National Institute of Child Health and Human Development International Site Development Initiative Perinatal Study) were analyzed. Women experiencing their first pregnancy who received ARVs for PR (started during pregnancy, stopped PP) or for TR (initiated prior to pregnancy and/or continued PP) were included and were followed PP. Increases in plasma VL (> 0.5 log10) and decreases in CD4% (> 20% relative decrease in CD4%) between hospital discharge (HD) and PP were assessed. Of the 1,229 women enrolled, 1,119 met the inclusion criteria (PR: 601; TR: 518). At enrollment, 87% were asymptomatic. The median CD4% values were: HD [34% (PR); 25% (TR)] and PP [29% (PR); 24% (TR)]. The VL increases were 60% (PR) and 19% (TR) (p < 0.0001). The CD4% decreases were 36% (PR) and 18% (TR) (p < 0.0001). Women receiving PR were more likely to exhibit an increase in VL [adjusted odds ratio (AOR) 7.7 (95% CI: 5.5-10.9) and a CD4% decrease (AOR 2.3; 95% CI: 1.6-3.2). Women receiving PR are more likely to have VL increases and CD4% decreases compared to those receiving TR. The clinical implications of these VL and CD4% changes remain to be explored.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
Multiple Sclerosis (MS) is the most common progressive and disabling neurological condition affecting young adults in the world today. From a genetic point of view, MS is a complex disorder resulting from the combination of genetic and non-genetic factors. We aimed to identify previously unidentified loci conducting a new GWAS of Multiple Sclerosis (MS) in a sample of 296 MS cases and 801 controls from the Spanish population. Meta-analysis of our data in combination with previous GWAS was done. A total of 17 GWAS-significant SNPs, corresponding to three different loci were identified:HLA, IL2RA, and 5p13.1. All three have been previously reported as GWAS-significant. We confirmed our observation in 5p13.1 for rs9292777 using two additional independent Spanish samples to make a total of 4912 MS cases and 7498 controls (ORpooled = 0.84; 95%CI: 0.80-0.89; p = 1.36 × 10-9). This SNP differs from the one reported within this locus in a recent GWAS. Although it is unclear whether both signals are tapping the same genetic association, it seems clear that this locus plays an important role in the pathogenesis of MS.
Resumo:
Brevidensoviruses have an encapsidated, single-stranded DNA genome that predominantly has a negative polarity. In recent years, they have received particular attention due to their potential role in the biological control of pathogenic arboviruses and to their unnoticed presence in cell cultures as contaminants. In addition, brevidensoviruses may also be useful as viral vectors. This study describes the first genetic and biological characterization of a mosquito densovirus that was isolated in Brazil; moreover, we examined the phylogenetic relationship between this isolate and the other brevidensoviruses. We further demonstrate that this densovirus has the potential to be used to biologically control dengue virus (DENV) infection with in vitro co-infection experiments. The present study provides evidence that this densovirus isolate is a fast-spreading virus that affects cell growth and DENV infection.