942 resultados para valence shells
Resumo:
The protein shells, or capsids, of nearly all spherelike viruses adopt icosahedral symmetry. In the present Letter, we propose a statistical thermodynamic model for viral self-assembly. We find that icosahedral symmetry is not expected for viral capsids constructed from structurally identical protein subunits and that this symmetry requires (at least) two internal switching configurations of the protein. Our results indicate that icosahedral symmetry is not a generic consequence of free energy minimization but requires optimization of internal structural parameters of the capsid proteins
Resumo:
Time correlation functions between the velocity of a tagged particle and velocities of particles within specified ranges of initial separations have been obtained by molecular dynamics simulation. These correlation functions have allowed us to analyze the momentum transfer between particles in different coordination shells. Two simple liquids at very different densities and two purely repulsive potentials with very different softnesses have been considered. The longitudinal correlations, which are the velocity cross-correlations along the initial direction defined by the centers of two given particles, have been calculated separately. It has been proven that these correlations should be attributed to particles both in front of and behind the central one. As with propagating longitudinal modes, they are strongly dependent on the softness of the potential core. Some characteristic features of the velocity correlation functions after the initial rise should be related to nonlongitudinal correlations. It has been shown that velocity cross-correlations between distinct particles cannot only be attributed to the direct interactions among particles, but also to the motions induced by the movement of a tagged particle on their neighbors.
Resumo:
Ground-state instability to bond alternation in long linear chains is considered from the point of view of valence-bond (VB) theory. This instability is viewed as the consequence of a long-range order (LRO) which is expected if the ground state is reasonably described in terms of the Kekulé states (with nearest-neighbor singlet pairing). It is argued that the bond alternation and associated LRO predicted by this simple, VB picture is retained for certain linear Heisenberg models; many-body VB calculations on spin s=1 / 2 and s=1 chains are carried out in a test of this argument.
Resumo:
The structural and electronic properties of Cu2O have been investigated using the periodic Hartree-Fock method and a posteriori density-functional corrections. The lattice parameter, bulk modulus, and elastic constants have been calculated. The electronic structure of and bonding in Cu2O are analyzed and compared with x-ray photoelectron spectroscopy spectra, showing a good agreement for the valence-band states. To check the quality of the calculated electron density, static structure factors and Compton profiles have been calculated, showing a good agreement with the available experimental data. The effective electron and hole masses have been evaluated for Cu2O at the center of the Brillouin zone. The calculated interaction energy between the two interpenetrated frameworks in the cuprite structure is estimated to be around -6.0 kcal/mol per Cu2O formula. The bonding between the two independent frameworks has been analyzed using a bimolecular model and the results indicate an important role of d10-d10 type interactions between copper atoms.
Resumo:
Charged and neutral oxygen vacancies in the bulk and on perfect and defective surfaces of MgO are characterized as quantum-mechanical subsystems chemically bonded to the host lattice and containing most of the charge left by the removed oxygens. Attractors of the electron density appear inside the vacancy, a necessary condition for the existence of a subsystem according to the atoms in molecules theory. The analysis of the electron localization function also shows attractors at the vacancy sites, which are associated to a localization basin shared with the valence domain of the nearest oxygens. This polyatomic superanion exhibits chemical trends guided by the formal charge and the coordination of the vacancy. The topological approach is shown to be essential to understand and predict the nature and chemical reactivity of these objects. There is not a vacancy but a coreless pseudoanion that behaves as an activated host oxygen.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
Texte en deux parties liturgiques réservées aux évêques (ff. 1-80 et 81-115). Changement de style et d'écriture à partir du f. 81.
Resumo:
Despite the central role that emotional reactivity plays in adaptation, few studies have examined age differences in this capacity under well-controlled laboratory conditions, on the basis of standardized emotion-evoking stimuli and assessing experiential, expressive, and physiological measures. 212 adults ranging in age from 20 to 81 years were exposed to 14 picture series, each lasting 60 s and of a different valence and arousal. We assessed valence and arousal ratings, cardiovascular, respiratory and electrodermalmeasures, facial muscle activity and gaze activity. Here, we present findings for 22 younger (mean age=24.0) and 22 older (mean age=72.1) adults for valence and arousal ratings, systolic bloodpressure (SBP) andheart rate (HR).Compared to younger adults, older adults rated unpleasant seriesmore negatively and showed a smaller range in arousal for pleasant series. SBP linearly increased with increasing appetitive activation. HR showed the expected deceleration from the pleasant to the unpleasant series.However, this effect was clearer for the younger adults than the older adults. For older adults, if something is pleasant, it is also judged to be generally lower in arousal, whereas, if something is unpleasant, it is also judged to be generally higher in arousal. The results for SBP indicate that the association between arousal and sympathetic outflow to the cardiovascular system might be similar in younger and older adults. The results for HR suggest that the parasympathetic activation might be attenuated in older adults as compared to younger adults.
Resumo:
For numerous shelly invertebrates, Cope's rule is shown in this paper to merely describe the particular case where volume increase is strictly coupled with diameter or length. Allometries, which are frequently observed in the evolution of the shells' geometry, mean that their size, volume and surface can vary independently. The consequences of this can be summarized as follows : 1) volume increase not coupled with an increase of diameter or length of the organisms generates increasing involution and/or lateral width in the shell of cephalopods, foraminifera and radiolarians; 2) an increase of the biomineralizing surface, not coupled with volume increase, generates increasing apparent complexity in the sutures and growth lines in ammonites, and an increase in the complexity and number of chambers in foraminifera.
Resumo:
Research suggests that respiratory patterns may reflect general dimensions of emotional response. In this study, we investigated the relationships between judgments of affective valence (pleasantness) and arousal and respiratory responses to acoustic stimuli. Sixteen environmental noises and 16 musical fragments of 30 s duration were presented to 31 participants, while respiration, skin conductance level and heart rate were recorded. Judgments of valence and arousal were registered using the 9-point Self-Assessment Manikin. For noises, breathing accelerated and minute ventilation augmented with decreases in pleasantness for low-arousal stimuli and with increases in arousal for positive stimuli. For music, breathing accelerated and minute ventilation augmented with increases both in rated valence and arousal. Skin conductance level increased with arousal ratings for music but not for noises, whereas mean heart rate increased with rated arousal for noises but not for music. Although both noises and music are sound-vibrations, differences in the relationships between affective judgments and physiological responses were found suggesting differences in the processing of the two types of acoustic stimuli. [Authors]
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
The Learning Affect Monitor (LAM) is a new computer-based assessment system integrating basic dimensional evaluation and discrete description of affective states in daily life, based on an autonomous adapting system. Subjects evaluate their affective states according to a tridimensional space (valence and activation circumplex as well as global intensity) and then qualify it using up to 30 adjective descriptors chosen from a list. The system gradually adapts to the user, enabling the affect descriptors it presents to be increasingly relevant. An initial study with 51 subjects, using a 1 week time-sampling with 8 to 10 randomized signals per day, produced n = 2,813 records with good reliability measures (e.g., response rate of 88.8%, mean split-half reliability of .86), user acceptance, and usability. Multilevel analyses show circadian and hebdomadal patterns, and significant individual and situational variance components of the basic dimension evaluations. Validity analyses indicate sound assignment of qualitative affect descriptors in the bidimensional semantic space according to the circumplex model of basic affect dimensions. The LAM assessment module can be implemented on different platforms (palm, desk, mobile phone) and provides very rapid and meaningful data collection, preserving complex and interindividually comparable information in the domain of emotion and well-being.
Resumo:
Using combined emotional stimuli, combining photos of faces and recording of voices, we investigated the neural dynamics of emotional judgment using scalp EEG recordings. Stimuli could be either combioned in a congruent, or a non-congruent way.. As many evidences show the major role of alpha in emotional processing, the alpha band was subjected to be analyzed. Analysis was performed by computing the synchronization of the EEGs and the conditions congruent vs. non-congruent were compared using statistical tools. The obtained results demonstrate that scalp EEG ccould be used as a tool to investigate the neural dynamics of emotional valence and discriminate various emotions (angry, happy and neutral stimuli).
Resumo:
The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior.