877 resultados para user data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring and fulfilling user requirements during medical device development will result in successful products that improve patient safety, improve device effectiveness and reduce product recalls and modifications. Medical device users are an extremely heterogeneous group and for any one device the users may include patients, their carers as well as various healthcare professionals. There are a number of factors that make capturing user requirements for medical device development challenging including the ethical and research governance involved with studying users as well as the inevitable time and financial constraints. Most ergonomics research methods have been developed in response to such practical constraints and a number of these have potential for medical device development. Some are suitable for specific points in the device cycle such as contextual inquiry and ethnography, others, such as usability tests and focus groups may be used throughout development. When designing user research there are a number of factors that may affect the quality of data collected including the sample of users studied, the use of proxies instead of real end-users and the context in which the research is performed. As different methods are effective in identifying different types of data, ideally more than one method should be used at each point in development, however financial and time factors may often constrain this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates how web search evaluation can be improved using historical interaction data. Modern search engines combine offline and online evaluation approaches in a sequence of steps that a tested change needs to pass through to be accepted as an improvement and subsequently deployed. We refer to such a sequence of steps as an evaluation pipeline. In this thesis, we consider the evaluation pipeline to contain three sequential steps: an offline evaluation step, an online evaluation scheduling step, and an online evaluation step. In this thesis we show that historical user interaction data can aid in improving the accuracy or efficiency of each of the steps of the web search evaluation pipeline. As a result of these improvements, the overall efficiency of the entire evaluation pipeline is increased. Firstly, we investigate how user interaction data can be used to build accurate offline evaluation methods for query auto-completion mechanisms. We propose a family of offline evaluation metrics for query auto-completion that represents the effort the user has to spend in order to submit their query. The parameters of our proposed metrics are trained against a set of user interactions recorded in the search engine’s query logs. From our experimental study, we observe that our proposed metrics are significantly more correlated with an online user satisfaction indicator than the metrics proposed in the existing literature. Hence, fewer changes will pass the offline evaluation step to be rejected after the online evaluation step. As a result, this would allow us to achieve a higher efficiency of the entire evaluation pipeline. Secondly, we state the problem of the optimised scheduling of online experiments. We tackle this problem by considering a greedy scheduler that prioritises the evaluation queue according to the predicted likelihood of success of a particular experiment. This predictor is trained on a set of online experiments, and uses a diverse set of features to represent an online experiment. Our study demonstrates that a higher number of successful experiments per unit of time can be achieved by deploying such a scheduler on the second step of the evaluation pipeline. Consequently, we argue that the efficiency of the evaluation pipeline can be increased. Next, to improve the efficiency of the online evaluation step, we propose the Generalised Team Draft interleaving framework. Generalised Team Draft considers both the interleaving policy (how often a particular combination of results is shown) and click scoring (how important each click is) as parameters in a data-driven optimisation of the interleaving sensitivity. Further, Generalised Team Draft is applicable beyond domains with a list-based representation of results, i.e. in domains with a grid-based representation, such as image search. Our study using datasets of interleaving experiments performed both in document and image search domains demonstrates that Generalised Team Draft achieves the highest sensitivity. A higher sensitivity indicates that the interleaving experiments can be deployed for a shorter period of time or use a smaller sample of users. Importantly, Generalised Team Draft optimises the interleaving parameters w.r.t. historical interaction data recorded in the interleaving experiments. Finally, we propose to apply the sequential testing methods to reduce the mean deployment time for the interleaving experiments. We adapt two sequential tests for the interleaving experimentation. We demonstrate that one can achieve a significant decrease in experiment duration by using such sequential testing methods. The highest efficiency is achieved by the sequential tests that adjust their stopping thresholds using historical interaction data recorded in diagnostic experiments. Our further experimental study demonstrates that cumulative gains in the online experimentation efficiency can be achieved by combining the interleaving sensitivity optimisation approaches, including Generalised Team Draft, and the sequential testing approaches. Overall, the central contributions of this thesis are the proposed approaches to improve the accuracy or efficiency of the steps of the evaluation pipeline: the offline evaluation frameworks for the query auto-completion, an approach for the optimised scheduling of online experiments, a general framework for the efficient online interleaving evaluation, and a sequential testing approach for the online search evaluation. The experiments in this thesis are based on massive real-life datasets obtained from Yandex, a leading commercial search engine. These experiments demonstrate the potential of the proposed approaches to improve the efficiency of the evaluation pipeline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’évaluation de l’action humanitaire (ÉAH) est un outil valorisé pour soutenir l’imputabilité, la transparence et l’efficience de programmes humanitaires contribuant à diminuer les inéquités et à promouvoir la santé mondiale. L’EAH est incontournable pour les parties prenantes de programme, les bailleurs de fonds, décideurs et intervenants souhaitant intégrer les données probantes aux pratiques et à la prise de décisions. Cependant, l’utilisation de l’évaluation (UÉ) reste incertaine, l’ÉAH étant fréquemment menée, mais inutilisé. Aussi, les conditions influençant l’UÉ varient selon les contextes et leur présence et applicabilité au sein d’organisations non-gouvernementales (ONG) humanitaires restent peu documentées. Les évaluateurs, parties prenantes et décideurs en contexte humanitaire souhaitant assurer l’UÉ pérenne détiennent peu de repères puisque rares sont les études examinant l’UÉ et ses conditions à long terme. La présente thèse tend à clarifier ces enjeux en documentant sur une période de deux ans l’UÉ et les conditions qui la détermine, au sein d’une stratégie d’évaluation intégrée au programme d’exemption de paiement des soins de santé d’une ONG humanitaire. L’objectif de ce programme est de faciliter l’accès à la santé aux mères, aux enfants de moins de cinq ans et aux indigents de districts sanitaires au Niger et au Burkina Faso, régions du Sahel où des crises alimentaires et économiques ont engendré des taux élevés de malnutrition, de morbidité et de mortalité. Une première évaluation du programme d’exemption au Niger a mené au développement de la stratégie d’évaluation intégrée à ce même programme au Burkina Faso. La thèse se compose de trois articles. Le premier présente une étude d’évaluabilité, étape préliminaire à la thèse et permettant de juger de sa faisabilité. Les résultats démontrent une logique cohérente et plausible de la stratégie d’évaluation, l’accessibilité de données et l’utilité d’étudier l’UÉ par l’ONG. Le second article documente l’UÉ des parties prenantes de la stratégie et comment celle-ci servit le programme d’exemption. L’utilisation des résultats fut instrumentale, conceptuelle et persuasive, alors que l’utilisation des processus ne fut qu’instrumentale et conceptuelle. Le troisième article documente les conditions qui, selon les parties prenantes, ont progressivement influencé l’UÉ. L’attitude des utilisateurs, les relations et communications interpersonnelles et l’habileté des évaluateurs à mener et à partager les connaissances adaptées aux besoins des utilisateurs furent les conditions clés liées à l’UÉ. La thèse contribue à l’avancement des connaissances sur l’UÉ en milieu humanitaire et apporte des recommandations aux parties prenantes de l’ONG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investors value the special attributes of monetary assets (e.g., exchangeability, liquidity, and safety) and pay a premium for holding them in the form of a lower return rate -- The user cost of holding monetary assets can be measured approximately by the difference between the returns on illiquid risky assets and those of safer liquid assets -- A more appropriate measure should adjust this difference by the differential risk of the assets in question -- We investigate the impact that time non-separable preferences has on the estimation of the risk-adjusted user cost of money -- Using U.K. data from 1965Q1 to 2011Q1, we estimate a habit-based asset pricing model with money in the utility function and find that the risk adjustment for risky monetary assets is negligible -- Thus, researchers can dispense with risk adjusting the user cost of money in constructing monetary aggregate indexes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

66 p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-orthogonal multiple access (NOMA) is emerging as a promising multiple access technology for the fifth generation cellular networks to address the fast growing mobile data traffic. It applies superposition coding in transmitters, allowing simultaneous allocation of the same frequency resource to multiple intra-cell users. Successive interference cancellation is used at the receivers to cancel intra-cell interference. User pairing and power allocation (UPPA) is a key design aspect of NOMA. Existing UPPA algorithms are mainly based on exhaustive search method with extensive computation complexity, which can severely affect the NOMA performance. A fast proportional fairness (PF) scheduling based UPPA algorithm is proposed to address the problem. The novel idea is to form user pairs around the users with the highest PF metrics with pre-configured fixed power allocation. Systemlevel simulation results show that the proposed algorithm is significantly faster (seven times faster for the scenario with 20 users) with a negligible throughput loss than the existing exhaustive search algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.

Relevância:

20.00% 20.00%

Publicador: