945 resultados para underwater locomotion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air can be trapped on the crevices of specially textured hydrophobic surfaces immersed in water. This heterogenous state of wetting in which the water is in contact with both the solid surface and the entrapped air is not stable. Diffusion of air into the surrounding water leads to gradual reduction in the size and numbers of the air bubbles. The sustainability of the entrapped air on such surfaces is important for many underwater applications in which the surfaces have to remain submersed for longer time periods. In this paper we explore the suitability of different classes of surface textures towards the drag reduction application by evaluating the time required for the disappearance of the air bubbles under hydrostatic conditions. Different repetitive textures consisting of holes, pillars and ridges of different sizes have been generated in silicon, aluminium and brass by isotropic etching, wire EDM and chemical etching respectively. These surfaces were rendered hydrophobic with self-assembled layer of fluorooctyl trichlorosilane for silicon and aluminium surfaces and 1-dodecanethiol for brass surfaces. Using total internal reflection the air bubbles are visualized with the help of a microscope and time lapse photography. Irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear. In an attempt to reverse the diffusion we explore the possibility of using electrolysis to generate gases at the textured surfaces. The gas bubbles are nucleated everywhere on the surface and as they grow they coalesce with each other and get pinned at the texture edges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between the digital human model (DHM) and environment typically occurs in two distinct modes; one, when the DHM maintains contacts with the environment using its self weight, wherein associated reaction forces at the interface due to gravity are unidirectional; two, when the DHM applies both tension and compression on the environment through anchoring. For static balancing in first mode of interaction, it is sufficient to maintain the projection of the centre of mass (COM) inside the convex region induced by the weight supporting segments of the body on a horizontal plane. In DHM, static balancing is required while performing specified tasks such as reach, manipulation and locomotion; otherwise the simulations would not be realistic. This paper establishes the geometric relationships that must be satisfied for maintaining static balance while altering the support configurations for a given posture and altering the posture for a given support condition. For a given location of the COM for a system supported by multiple point contacts, the conditions for simultaneous withdrawal of a specified set of contacts have been determined in terms of the convex hulls of the subsets of the points of contact. When the projection of COM must move beyond the existing support for performing some task, new supports must be enabled for maintaining static balance. This support seeking behavior could also manifest while planning for reduction of support stresses. Feasibility of such a support depends upon the availability of necessary features in the environment. Geometric conditions necessary for selection of new support on horizontal,inclined and vertical surfaces within the workspace of the DHM for such dynamic scenario have been derived. The concepts developed are demonstrated using the cases of sit-to-stand posture transition for manipulation of COM within the convex supporting polygon, and statically stable walking gaits for support seeking within the kinematic capabilities of the DHM. The theory developed helps in making the DHM realize appropriate behaviors in diverse scenarios autonomously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slow flow in granular materials is characterized by high solid fraction and sustained inter-particle interaction. The kinematics of trawling or cutting is encountered in processes such as locomotion of organisms in sand; trawl gear movement on a soil deposit; plow movement; movement of rovers, earth moving equipment etc. Additionally, this configuration is very akin to shallow drilling configuration encountered in the mining and petroleum industries. An experimental study has been made in order to understand velocity and deformation fields in cutting of a model rounded sand. Under nominal plane strain conditions, sand is subjected to orthogonal cutting at different tool-rake angles. High-resolution optical images of the region of cutting were obtained during the flow of the granular ensemble around the tool. Interesting kinematics underlying the formation of a chip and the evolution of the deformation field is seen in these experiments. These images are also analyzed using a PIV algorithm and detailed information of the deformation parameters such as velocity, strain rate and volume change is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A paradigm shift from hard to flexible, organic-based optoelectronics requires fast and reversible mechanical response from actuating materials that are used for conversion of heat or light into mechanical motion. As the limits in the response times of polymer-based actuating materials are reached, which are inherent to the less-than-optimal coupling between the light/heat and mechanical energy in them, 1 a conceptually new approach to mechanical actuation is required to leapfrog the performance of organic actuators. Herein, we explore single crystals of 1,2,4,5-tetrabromobenzene (TBB) as actuating elements and establish relations between their kinematic profile and mechanical properties. Centimeter-size acicular crystals of TBB are the only naturally twinned crystals out of about a dozen known materials that exhibit the thermosalient effect-an extremely rare and visually impressive crystal locomotion. When taken over a phase transition, crystals of this material store mechanical strain and are rapidly self-actuated to sudden jumps to release the internal strain, leaping up to several centimeters. To establish the structural basis for this colossal crystal motility, we investigated the mechanical profile of the crystals from macroscale, in response to externally induced deformation under microscope, to nanoscale, by using nanoindentation. Kinematic analysis based on high-speed recordings of over 200 twinned TBB crystals exposed to directional or nondirectional heating unraveled that the crystal locomotion is a kinematically complex phenomenon that includes at least six kinematic effects. The nanoscale tests confirm the highly elastic nature, with an elastic deformation recovery (60%) that is far superior to those of molecular crystals reported earlier. This property appears to be critical for accumulation of stress required for crystal jumping. Twinned crystals of TBB exposed to moderate directional heating behave as all-organic analogue of a bimetallic `strip, where the lattice misfit between the two crystal components drives reveriible deformation of the crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

`'Cassie'' state of wetting can be established by trapping air pockets on the crevices of textured hydrophobic surfaces, leading to significant drag reduction. However, this drag reduction cannot be sustained due to gradual dissolution of trapped air into water. In this paper, we explore the possibility of sustaining the underwater Cassie state of wetting in a microchannel by controlling the solubility of air in water; the solubility being changed by controlling the local absolute pressure near the surface. We show that using this method, we can in fact make the water locally supersaturated with air thus encouraging the growth of trapped air pockets on the surface. In this case, the water acts as a pumping medium, delivering air to the crevices of the hydrophobic surface in the microchannel, where the presence of air pockets is most beneficial from the drag reduction perspective. In our experiments, the air trapped on a textured surface is visualized using total internal reflection based technique, at different local absolute pressures with the pressure drop (or drag) also being simultaneously measured. We find that, by controlling the pressure and hence the solubility close to the surface, we can either shrink or grow the trapped air bubbles, uniformly over a large surface area. The experiments show that, by precisely controlling the pressure and hence the solubility we can sustain the `'Cassie state'' over extended periods of time. This method thus provides a means of getting sustained drag reduction from a textured hydrophobic surface in channel flows. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian cells subjected to conditions of spaceflight and the microgravity environment ofspace; manifest a number of alterations in structure and function. Among the most notable changes incells flown on the Space Shuttle are reduced growth activation and decline in growth rate in the totalpopulation. Other changes include chromosomal aberrations, inhibited locomotion, alteredcytokine production, changes in PKC distribution, and increased apoptos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated.We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard–Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对水下超声速气体射流的动力学行为进行了实验研究.通过流动可视化揭示了回击现象的演化过程,利用探针排获得了射流近场区的脉动压力分布,实验结果表明:在超声速喷管出口两倍直径处,射流形貌的变化导致气体中出现了大幅值压力脉冲.通过流场可视化与压力测量的同步校验,证实了喷口端面处回击事件与流场气相区中压力脉动之间相关性.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-native, invasive genotype of the common reed ( Phragmites australis (Cav.) Trin. ex Steudel) has become a problem of significant proportions throughout wetlands of North America (Saltonstall 2001). Although attempts to suppress or eradicate Phragmites have utilized a wide variety of techniques, herbicides have generally been most effective (Marks et al. 1994). In the spring, mid-summer, and late summer of 2003, we attempted to opportunistically control Phragmites in five freshwater ponds within Cape Cod National Seashore (CCNS) by repeatedly severing stems underwater, at ground level.(PDF has 4 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salvinia (Salvinia minima Willd.) is a water fern found in Florida waters, usually associated with Lemna and other small free-floating species. Due to its buoyancy and mat-forming abilities, it is spread by moving waters. In 1994, salvinia was reported to be present in 247 water bodies in the state (out of 451 surveyed public waters, Schardt 1997). It is a small, rapidly growing species that can become a nuisance due to its explosive growth rates and its ability to shade underwater life (Oliver 1993). Any efforts toward management of salvinia populations must consider that, in reasonable amounts, its presence is desirable since it plays an important role in the overall ecosystem balance. New management alternatives need to be explored besides the conventional herbicide treatments; for example, it has been shown that the growth of S. molesta can be inhibited by extracts of the tropical weed parthenium (Parthenium hysterophorus) and its purified toxin parthenin (Pande 1994, 1996). We believe that cattail, Typha spp. may be a candidate for control of S. minima infestations. Cattail is an aggressive aquatic plant, and has the ability to expand over areas that weren't previously occupied by other species (Gallardo et al. 1998a and references cited there). In South Florida, T. domingensis is a natural component of the Everglades ecosystem, but in many cases it has become the dominant marsh species, outcompeting other native plants. In Florida public waters, this cattail species is the most dominant emergent species of aquatic plants (Schardt 1997). Several factors enable it to accomplish opportunistic expansion, including size, growth habits, adaptability to changes in the surroundings, and the release of compounds that can prevent the growth and development of other species. We have been concerned in the past with the inhibitory effects of the T. domingensis extracts, and the phenolic compounds mentioned before, towards the growth and propagation of S. minima (Gallardo et al. 1998b). This investigation deals with the impact of cattail materials on the rates of oxygen production of salvinia, as determined through a series of Warburg experiments (Martin et al. 1987, Prindle and Martin 1996).