955 resultados para transition metal cluster
Resumo:
Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bi1-xCaxFe1-xCoxO3 nanoparticles with x=0.0, 0.05, 0.10 and 0.15 were successfully synthesized by cost effective tartaric acid based sol gel route. The alkali earth metal Ca2+ ions and transition metal Co3+ ions codoping at A and B-sites of BiFeO3 results in structural distortion and phase transformation. Rietveld refinement of XRD patterns suggested the coexistence of rhombohedral and orthorhombic phases in codoped BiFeO3 samples. Both XRD and Raman scattering studies showed the compressive lattice distortion in the samples induced by codoping of Ca2+ and Co3+ ions. Two-phonon Raman spectra exhibited the improvement of magnetization in these samples. X-ray photoelectron spectroscopy (XPS) showed the dominancy of Fe3+ and Co3+ oxidation states along with the shifting of the binding energy of Bi 4f orbital which confirms the substitution Ca2+ at Bi-site. The magnetic study showed the enhancement in room temperature ferromagnetic behavior with co-substitution consistent with Rama analysis. The gradual change in line shape of electron spin resonance spectra indicated the local distortion induced by codoping. (C) 2015 Published by Elsevier Ltd and Techna Group S.r.l.
Resumo:
Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.
Resumo:
In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.
Resumo:
An optical-phonon-limited velocity model has been employed to investigate high-field transport in a selection of layered 2-D materials for both, low-power logic switches with scaled supply voltages, and high-power, high-frequency transistors. Drain currents, effective electron velocities, and intrinsic cutoff frequencies as a function of carrier density have been predicted, thus providing a benchmark for the optical-phonon-limited high-field performance limits of these materials. The optical-phonon-limited carrier velocities for a selection of multi-layers of transition metal dichalcogenides and black phosphorus are found to be modest compared to their n-channel silicon counterparts, questioning the utility of biasing these devices in the source-injection dominated regime. h-BN, at the other end of the spectrum, is shown to be a very promising material for high-frequency, high-power devices, subject to the experimental realization of high carrier densities, primarily due to its large optical-phonon energy. Experimentally extracted saturation velocities from few-layer MoS2 devices show reasonable qualitative and quantitative agreement with the predicted values. The temperature dependence of the measured v(sat) is discussed and compared with the theoretically predicted dependence over a range of temperatures.
Resumo:
Bentonite is a preferred buffer and backfill material for deep geological disposal of high-level nuclear waste (HLW). Bentonite does not retain anions by virtue of its negatively charged basal surface. Imparting anion retention ability to bentonite is important to enable the expansive clay to retain long-lived I-129 (iodine-129; half-life = 16 million years) species that may escape from the HLW geological repository. Silver-kaolinite (AgK) material is prepared as an additive to improve the iodide retention capacity of bentonite. The AgK is prepared by heating kaolinite-silver nitrate mix at 400 degrees C to study the kaolinite influence on the transition metal ion when reacting at its dehydroxylation temperature. Thermo gravimetric-Evolved Gas Detection analysis, X-ray diffraction analysis, X-ray photo electron spectroscopy and electron probe micro analysis indicated that silver occurs as AgO/Ag2O surface coating on thermally reacting kaolinite with silver nitrate at 400 degrees C.
Resumo:
Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.
Resumo:
We report a detailed study of surface-bound chemical vapor deposition of carbon nanotubes and nanofibers from evaporated transition metal catalysts exposed to ammonia diluted acetylene. We show that a reduction of the Fe/Co catalyst film thickness below 3 nm results into a transition from large diameter (> 40 nm), bamboo-like nanofibers to small diameter (similar to 5 nm) multi-walled carbon nanotubes. The nanostructuring of ultrathin catalyst films critically depends on the gas atmosphere, with the resulting island distribution initiating the carbon nucleation. Compared to purely thermal chemical vapor deposition, we find that, for small diameter nanotube growth, DC plasma assistance is detrimental to graphitization and sample homogeneity and cannot prevent an early catalyst poisoning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Magnetic domain structure of Nd60Al10Fe20Co10 bulk metallic glass (BMG) has been studied by using magnetic-force microscopy. In the magnetic-force images it is shown that the exchange-interaction-type magnetic domains with a period of about 360 nm do exist in the BMG, which is believed to be associated with the appearance of hard-magnetic properties in this system. The existence of the large-scale domains demonstrates that the magnetic moments of a great deal of short-scale ordered atomic clusters in the BMG have been aligned by exchange coupling. Annealing at 715 K leads to partial crystallization of the BMG. However, the exchange coupling is stronger in the annealed sample, which is considered to arise from the increase of transition-metal concentration in the amorphous phase due to the precipitation of Nd crystalline phase.
Resumo:
Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. Esta tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.
Resumo:
Resumen: Se propone utilizar un óxido como el Cr2O3 como catalizador ya que se ha determinado anteriormente, en la primera etapa de esta investigación, (“Estudio comparativo de la retención de SO2 sobre óxidos de metales de transición soportados en alúmina”), que la retención de SO2 sobre su superficie es un proceso de quimisorción con formación de especies sulfito superficiales sobre sitios básicos y un proceso de óxido reducción del ión metálico. Apoya este mecanismo el hecho de que la cantidad de SO2 adsorbido es función de la temperatura. La mayor eficiencia del Cr2O3 puede explicarse en base a sus propiedades superficiales, lo cual ha sido utilizado en la segunda etapa de reacción de reducción, ya que se ha completado la etapa inicial de quimisorción. En la segunda etapa de esta investigación (“Estudio de la reacción de reducción de SO2 con CH4 a altas temperaturas sobre catalizador de Cr2O3 soportado en alúmina”), se apuntó al estudio de un nuevo tipo de sinergia entre propiedades ácido-base y propiedades redox en una misma superficie. La tercera etapa apuntó a determinar la influencia que tiene el O2 en este proceso, ya que el O2 se encuentra presente en las chimeneas industriales en las condiciones de reacción entre el SO2 y el CH4, y produce modificaciones en los parámetros de reacción. Se experimentó con diferentes masas de catalizador y flujos de los distintos gases, y se estudió la influencia de la presencia de oxígeno en la reacción y particularmente con diferentes flujos del mismo, y la posibilidad de regeneración del catalizador.En esta cuarta y última etapa se están estudiando los cambios que se producen en la reacción al pasar de escala laboratorio a planta piloto utilizando una columna de mayor diámetro construída en metal. A través de los datos experimentales se está estudiando, en conjunto con el INIFTA, la presencia de especies sulfito y sulfato sobre la superficie del soporte. Adicionalmente, por medio del programa VASP (Vienna Ab-initio Simulation Package), se analiza la interacción entre los reactivos gaseosos y el soporte.
Resumo:
In studying a proposed carbon monoxide reduction scheme an attempt has been made to synthesize bifunctional group 8 transition metal carbonyl complexes containing intramolecular nucleophiles. The incorporation of alkoxide nucleophiles through cyclopentadienyl ligands was hoped to encourage attack on carbonyl ligands thereby forming cyclic metallaesters. The attempts to synthesize these substituted cyclopentadienyl group 8 transition metal complexes have thus far been unsuccessful.
Resumo:
Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.
After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.
In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
Metallic glass has since its debut been of great research interest due to its profound scientific significance. Magnetic metallic glasses are of special interest because of their promising technological applications. In this thesis, we introduced a novel series of Fe-based alloys and offer a holistic review of the physics and properties of these alloys. A systematic alloy development and optimization method was introduced, with experimental implementation on transition metal based alloying system. A deep understanding on the influencing factors of glass forming ability was brought up and discussed, based on classical nucleation theory. Experimental data of the new Fe-based amorphous alloys were interpreted to further analyze those influencing factors, including reduced glass transition temperature, fragility, and liquid-crystal interface free energy. Various treatments (fluxing, overheating, etc.) were discussed for their impacts on the alloying systems' thermodynamics and glass forming ability. Multiple experimental characterization methods were discussed to measure the alloys' soft magnetic properties. In addition to theoretical and experimental investigation, we also gave a detailed numerical analysis on the rapid-discharge-heating-and-forming platform. It is a novel experimental system which offers extremely fast heating rate for calorimetric characterization and alloy deformation.