957 resultados para thermal drift of best focus
Resumo:
Soybean (Glycine max (Merrill) L) contains high content of aglycone isoflavones, as well as glucoside and malonylconjugates. In this work, the content of isoflavones in defatted soy flour was determined by reversed-phase high-performance liquid chromatography (RPHPLC) after alcoholic extraction in methanol/water mixture in the ratio 80:20 (v/v). It was observed that the heating treatment transformed the malonylglucosides into glucoside isoflavones. After heat treatment at 121 degrees C for 30 min, nearly all malonylisoflavones were converted into glucoside, but acetylisoflavones were not detected via RPHPLC analysis. Electrospray ionization mass spectrometry confirmed the presence of malonylisoflavones in heat-treated defatted soy flour by direct infusion analysis. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The biological characteristics of Telenomus remus Nixon, 1937 (Hymenoptera: Platygastridae) on eggs of Spodoptera albula (Walker, 1857); S. cosmioides Walker 1858, S. eridania (Cramer, 1782); and S. frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) were evaluated under different temperatures (19, 22, 25, 28, 31, and 34 degrees C +/- 1 degrees C). The duration of the T remus egg-to-adult period on eggs of all four Spodoptera species and the longevity of adults of T. remus were both inversely proportional to the increase in temperature. Parasitoid emergence was higher than 80% at temperatures from 19 to 28 degrees C when the parasitoid was reared on eggs of S. eridania and S. frugiperda. Differently, when the parasitoid was reared on eggs of S. albula and S. cosmioides, T. remus emergence at rates of 80% or higher just occurred from 22 to 25 degrees C and at 22 degrees C, respectively. At 34 degrees C, this parameter was lower than 30% for T reams reared in all hosts. The sex ratio was 64-86% females, except for T. remus in S. cosmioides eggs at 34 C, in which temperature it was 39%. The estimated thermal requirements of T. remus, for the thermal constant (K) and the base temperature (T(base)), were: 125.39 DD and 15.139 degrees C; 125.56 DD and 14.912 degrees C; 142.98 DD and 14.197 degrees C; and 149.16 DD and 13.846 degrees C, for S. cosmioides, S. frugiperda, S. albula, and S. eridania, respectively. In general, T. remus showed good parasitism potential on all the hosts, although eggs of S. frugiperda, S. eridania, and S. albula proved to be the most suitable for mass rearing of T reams in the laboratory. Eggs of S. cosmioides are less suitable because of the lower parasitoid emergence observed at most of the temperatures with exception of 22 degrees C.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
The aim of this research was to characterize emulsion systems (ES) containing nonionic ethoxylated surfactants by using rheological, microscopic, and thermogravimetric assays. Three formulations were developed: ES-1: 8.0% (w/w) oleth-20; ES-2: 4.0% (w/w) oleth-20/4.0% (w/w) steareth-21; and ES-3: 8.0% (w/w) steareth-21. The systems showed typical non-Newtonian pseudo-plastic behavior. The presence of a lamellar gel phase was observed for all systems, with ES-2 being more pronounced. Through thermogravimetry, the profiles of the three systems were found to be similar, consisting of two main events, the first one being characterized by loss of water and, beyond 110 degrees C, by loss of the oil phase.
Resumo:
The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.
Resumo:
The effect of terbium (Tb) doping on the photoluminescence (PL) of crystalline aluminum nitride (c-AlN) and amorphous hydrogenated silicon carbide (a-SiC:H) thin films has been investigated for different Tb atomic concentrations. The samples were prepared by DC and RF magnetron reactive sputtering techniques covering the concentration range of Tb from 0.5 to 11 at.%. The Tb-related light emission versus the Tb concentration is reported for annealing temperatures of 450 °C, 750 °C and 1000 °C. In the low concentration region the intensity exhibits a linear increase and its slope is enhanced with the annealing temperature giving an activation energy of 0.106 eV in an Arrhenius plot. In the high concentration region an exponential decay is recorded which is almost independent on the host material, its structure and the annealing process.
Resumo:
This thesis work has been developed in the framework of a new experimental campaign, proposed by the NUCL-EX Collaboration (INFN III Group), in order to progress in the understanding of the statistical properties of light nuclei, at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. The determination of the nuclear level density in the A~20 region, the understanding of the statistical behavior of light nuclei with excitation energies ~3 A.MeV, and the measurement of observables linked to the presence of cluster structures of nuclear excited levels are the main physics goals of this work. On the theory side, the contribution to this project given by this work lies in the development of a dedicated Monte-Carlo Hauser-Feshbach code for the evaporation of the compound nucleus. The experimental part of this thesis has consisted in the participation to the measurement 12C+12C at 95 MeV beam energy, at Laboratori Nazionali di Legnaro - INFN, using the GARFIELD+Ring Counter(RCo) set-up, from the beam-time request to the data taking, data reduction, detector calibrations and data analysis. Different results of the data analysis are presented in this thesis, together with a theoretical study of the system, performed with the new statistical decay code. As a result of this work, constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg are given. Moreover, pre-equilibrium effects, tentatively interpreted as alpha-clustering effects, are put in evidence, both in the entrance channel of the reaction and in the dissipative dynamics on the path towards thermalisation.
Resumo:
MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Large-scale structures can be considered an interesting and useful "laboratory" to better investigate the Universe; in particular the filaments connecting clusters and superclusters of galaxies can be a powerful tool for this intent, since they are not virialised systems yet. The large structures in the Universe have been studied in different bands, in particular the present work takes into consideration the emission in the radio band. In the last years both compact and diffuse radio emission have been detected, revealing to be associated to single objects and clusters of galaxies respectively. The detection of these sources is important, because the radiation process is the synchrotron emission, which in turn is linked to the presence of a magnetic field: therefore studying these radio sources can help in investigating the magnetic field which permeates different portions of space. Furthermore, radio emission in optical filaments have been detected recently, opening new chances to further improve the understanding of structure formation. Filaments can be seen as the net which links clusters and superclusters. This work was made with the aim of investigating non-thermal properties in low-density regions, looking for possible filaments associated to the diffuse emission. The analysed sources are 0917+75, which is located at a redshift z = 0.125, and the double cluster system A399-A401, positioned at z = 0.071806 and z = 0.073664 respectively. Data were taken from VLA/JVLA observations, and reduced and calibrated with the package AIPS, following the standard procedure. Isocountour and polarisation maps were yielded, allowing to derive the main physical properties. Unfortunately, because of a low quality data for A399-A401, it was not possible to see any radio halo or bridge.